A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming

This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedanc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 9; pp. 2215 - 2220
Main Authors Yue Wen, Jennie Si, Xiang Gao, Huang, Stephanie, He Helen Huang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices. This simulation study aimed at demonstrating the feasibility of ADP for automatic tuning of the twelve knee joint impedance parameters during a complete gait cycle to achieve balanced walking. Given that the accurate models of human walking dynamics are difficult to obtain, the model-free ADP control algorithms were considered. First, direct heuristic dynamic programming (dHDP) was applied to the control problem, and its performance was evaluated on OpenSim, an often-used dynamic walking simulator. For the comparison purposes, we selected another established ADP algorithm, the neural fitted Q with continuous action (NFQCA). In both cases, the ADP controllers learned to control the right knee joint and achieved balanced walking, but dHDP outperformed NFQCA in this application during a 200 gait cycle-based testing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2016.2584559