A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network

In this article, we develop a hybrid physics-informed neural network (hybrid PINN) for partial differential equations (PDEs). We borrow the idea from the convolutional neural network (CNN) and finite volume methods. Unlike the physics-informed neural network (PINN) and its variations, the method pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 10; pp. 5514 - 5526
Main Author Fang, Zhiwei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we develop a hybrid physics-informed neural network (hybrid PINN) for partial differential equations (PDEs). We borrow the idea from the convolutional neural network (CNN) and finite volume methods. Unlike the physics-informed neural network (PINN) and its variations, the method proposed in this article uses an approximation of the differential operator to solve the PDEs instead of automatic differentiation (AD). The approximation is given by a local fitting method, which is the main contribution of this article. As a result, our method has been proved to have a convergent rate. This will also avoid the issue that the neural network gives a bad prediction, which sometimes happened in PINN. To the author's best knowledge, this is the first work that the machine learning PDE's solver has a convergent rate, such as in numerical methods. The numerical experiments verify the correctness and efficiency of our algorithm. We also show that our method can be applied in inverse problems and surface PDEs, although without proof.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3070878