A 4.49nW/Pixel Light-to-Stimulus Duration Converter-Based Retinal Prosthesis Chip

This paper presents a 288-pixel retinal prosthesis (RP) chip implemented in a 0.18 μm CMOS process. The proposed light-to-stimulus duration converter (LSDC) and biphasic stimulator generate a wide range of retinal stimuli proportional to the incident light intensity at a low supply voltage of 1V. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 15; no. 6; pp. 1140 - 1148
Main Authors Choi, Dong-Hwi, Roh, Hyeonhee, Im, Maesoon, Jee, Dong-Woo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a 288-pixel retinal prosthesis (RP) chip implemented in a 0.18 μm CMOS process. The proposed light-to-stimulus duration converter (LSDC) and biphasic stimulator generate a wide range of retinal stimuli proportional to the incident light intensity at a low supply voltage of 1V. The implemented chip shows 25.5 dB dynamic stimulation range and the state-of-the art low power consumption of 4.49 nW/pixel. Ex-vivo experiments were performed with a mouse retina and patch-clamp recording. The electrical artifact recorded by the patch electrode demonstrates that the proposed chip can generate electrical stimuli that have different pulse durations depending on the light intensity. Correspondingly, the spike counts in a retinal ganglion cell (RGC) were successfully modulated by the brightness of the light stimuli.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2021.3128418