Reversible switching of single tin phthalocyanine molecules on the InAs(111)A surface

Individual tin phthalocyanine (SnPc) molecules adsorbed on the InAs(111)A surface were studied by low-temperature scanning tunnelling microscopy (STM) at 5 K. Consistently with the nonplanar molecular structure, SnPc adopts two in-plane adsorption geometries with the centre Sn atom either above (SnP...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 24; no. 39; p. 394004
Main Authors Nacci, C, Kanisawa, K, Fölsch, S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 03.10.2012
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Individual tin phthalocyanine (SnPc) molecules adsorbed on the InAs(111)A surface were studied by low-temperature scanning tunnelling microscopy (STM) at 5 K. Consistently with the nonplanar molecular structure, SnPc adopts two in-plane adsorption geometries with the centre Sn atom either above (SnPcup) or below (SnPcdown) the molecular plane. Depending on the current and bias applied to the tunnel junction, the molecule can be reversibly switched between the two conformations, implying a controlled transfer of the Sn atom through the molecular plane. The SnPcdown conformer is characterized by an enhanced surface bonding as compared to the SnPcup conformer. SnPcup molecules can be repositioned by the STM tip by means of lateral manipulation, whereas this is not feasible for SnPcdown molecules. The reversible switching process thus enables one to either laterally move the molecule or anchor it to the semiconductor surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/24/39/394004