On Optimal Time-Varying Feedback Controllability for Probabilistic Boolean Control Networks

This brief studies controllability for probabilistic Boolean control network (PBCN) with time-varying feedback control laws. The concept of feedback controllability with an arbitrary probability for PBCNs is formulated first, and a control problem to maximize the probability of time-varying feedback...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 6; pp. 2202 - 2208
Main Authors Toyoda, Mitsuru, Wu, Yuhu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief studies controllability for probabilistic Boolean control network (PBCN) with time-varying feedback control laws. The concept of feedback controllability with an arbitrary probability for PBCNs is formulated first, and a control problem to maximize the probability of time-varying feedback controllability is investigated afterward. By introducing semitensor product (STP) technique, an equivalent multistage decision problem is deduced, and then a novel optimization algorithm is proposed to obtain the maximum probability of controllability and the corresponding optimal feedback law simultaneously. The advantages of the time-varying optimal controller obtained by the proposed algorithm, compared to the time-invariant one, are illustrated by numerical simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2927241