Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces
In this paper, a closed-loop control has been developed for the exoskeleton robot system based on brain-machine interface (BMI). Adaptive controllers in joint space, a redundancy resolution method at the velocity level, and commands that generated from BMI in task space have been integrated effectiv...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 12; pp. 3558 - 3571 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a closed-loop control has been developed for the exoskeleton robot system based on brain-machine interface (BMI). Adaptive controllers in joint space, a redundancy resolution method at the velocity level, and commands that generated from BMI in task space have been integrated effectively to make the robot perform manipulation tasks controlled by human operator's electroencephalogram. By extracting the features from neural activity, the proposed intention decoding algorithm can generate the commands to control the exoskeleton robot. To achieve optimal motion, a redundancy resolution at the velocity level has been implemented through neural dynamics optimization. Considering human-robot interaction force as well as coupled dynamics during the exoskeleton operation, an adaptive controller with redundancy resolution has been designed to drive the exoskeleton tracking the planned trajectory in human brain and to offer a convenient method of dynamics compensation with minimal knowledge of the dynamics parameters of the exoskeleton robot. Extensive experiments which employed a few subjects have been carried out. In the experiments, subjects successfully fulfilled the given manipulation tasks with convergence of tracking errors, which verified that the proposed brain-controlled exoskeleton robot system is effective. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2018.2872595 |