Biomimetic angle-ply multi-lamellar scaffold for annulus fibrosus tissue engineering
Constructing a biomimetic scaffold that replicates the complex architecture of intervertebral disc annulus fibrosus (AF) remains a major goal in AF tissue engineering. In this study, a biomimetic angle-ply multi-lamellar polycaprolactone/silk fibroin (PCL/SF) AF scaffold was fabricated. Wet-spinning...
Saved in:
Published in | Journal of materials science. Materials in medicine Vol. 31; no. 8; p. 67 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Constructing a biomimetic scaffold that replicates the complex architecture of intervertebral disc annulus fibrosus (AF) remains a major goal in AF tissue engineering. In this study, a biomimetic angle-ply multi-lamellar polycaprolactone/silk fibroin (PCL/SF) AF scaffold was fabricated. Wet-spinning was used to obtain aligned PCL/SF microfiber sheets, and these were excised into strips with microfibers aligned at +30° or −30° relative to the strip long axis. This was followed by stacking two strips with opposing fiber alignment and wrapping them concentrically around a mandrel. Our results demonstrated that the scaffold possessed spatial structure and mechanical properties comparable to natural AF. The scaffold supported rabbit AF cells adhesion, proliferation, infiltration and guided oriented growth and extracellular matrix deposition. In conclusion, our angle-ply multi-lamellar scaffold offers a potential solution for AF replacement therapy and warrants further attention in future investigations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0957-4530 1573-4838 1573-4838 |
DOI: | 10.1007/s10856-020-06404-7 |