Hypusination of eukaryotic initiation factor 5A (eIF5A): a novel therapeutic target in BCR-ABL–positive leukemias identified by a proteomics approach
Inhibition of BCR-ABL tyrosine kinase with imatinib represents a major breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular BCR-ABL downstream targets, we analy...
Saved in:
Published in | Blood Vol. 109; no. 4; pp. 1701 - 1711 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Elsevier Inc
15.02.2007
The Americain Society of Hematology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inhibition of BCR-ABL tyrosine kinase with imatinib represents a major breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular BCR-ABL downstream targets, we analyzed differences in global protein expression in BCR-ABL–positive K562 cells treated with or without imatinib in vitro. Among the 19 proteins found to be differentially expressed, we detected the down-regulation of eukaryotic initiation factor 5A (eIF5A), a protein essential for cell proliferation. eIF5A represents the only known eukaryotic protein activated by posttranslational hypusination. Hypusination inhibitors (HIs) alone exerted an antiproliferative effect on BCR-ABL–positive and –negative leukemia cell lines in vitro. However, the synergistic dose-response relationship found for the combination of imatinib and HI was restricted to Bcr-Abl–positive cells. Furthermore, this synergistic effect was confirmed by cytotoxicity assays, cell-cycle analysis, and CFSE labeling of primary CD34+ CML cells. Specificity of this effect could be demonstrated by cotreatment of K562 cells with imatinib and siRNA against eIF5. In conclusion, through a comparative proteomics approach and further functional analysis, we identified the inhibition of eIF5A hypusination as a promising new approach for combination therapy in BCR-ABL–positive leukemias. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2005-03-037648 |