Development and validation of a radiological diagnosis model for hypersensitivity pneumonitis

High-resolution computed tomography (HRCT) may be useful for diagnosing hypersensitivity pneumonitis. Here, we develop and validate a radiological diagnosis model and model-based points score.Patients with interstitial lung disease seen at the University of Michigan Health System (derivation cohort)...

Full description

Saved in:
Bibliographic Details
Published inThe European respiratory journal Vol. 52; no. 2; p. 1800443
Main Authors Salisbury, Margaret L, Gross, Barry H, Chughtai, Aamer, Sayyouh, Mohamed, Kazerooni, Ella A, Bartholmai, Brian J, Xia, Meng, Murray, Susan, Myers, Jeffrey L, Lagstein, Amir, Konopka, Kristine E, Belloli, Elizabeth A, Sheth, Jamie S, White, Eric S, Holtze, Colin, Martinez, Fernando J, Flaherty, Kevin R
Format Journal Article
LanguageEnglish
Published England 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-resolution computed tomography (HRCT) may be useful for diagnosing hypersensitivity pneumonitis. Here, we develop and validate a radiological diagnosis model and model-based points score.Patients with interstitial lung disease seen at the University of Michigan Health System (derivation cohort) or enrolling in the Lung Tissue Research Consortium (validation cohort) were included. A thin-section, inspiratory HRCT scan was required. Thoracic radiologists documented radiological features.The derivation cohort comprised 356 subjects (33.9% hypersensitivity pneumonitis) and the validation cohort comprised 424 subjects (15.5% hypersensitivity pneumonitis). An age-, sex- and smoking status-adjusted logistic regression model identified extent of mosaic attenuation or air trapping greater than that of reticulation ("MA-AT>Reticulation"; OR 6.20, 95% CI 3.53-10.90; p<0.0001) and diffuse axial disease distribution (OR 2.33, 95% CI 1.31-4.16; p=0.004) as hypersensitivity pneumonitis predictors (area under the receiver operating characteristic curve 0.814). A model-based score >2 (1 point for axial distribution, 2 points for "MA-AT>Reticulation") has specificity 90% and positive predictive value (PPV) 74% in the derivation cohort and specificity 96% and PPV 44% in the validation cohort. Similar model performance is seen with population restriction to those reporting no exposure (score >2: specificity 91%).When radiological mosaic attenuation or air trapping are more extensive than reticulation and disease has diffuse axial distribution, hypersensitivity pneumonitis specificity is high and false diagnosis risk low (<10%), but PPV is diminished in a low-prevalence setting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0903-1936
1399-3003
DOI:10.1183/13993003.00443-2018