Solar thermochemical plant analysis for hydrogen production with the copper–chlorine cycle

In this article, a solar-based method of generating hydrogen from the copper–chlorine water-splitting cycle is developed and evaluated. An analysis is performed for solar plants with different hydrogen production capacities at three locations across Canada. Operating parameters of the solar field an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 35; no. 16; pp. 8511 - 8520
Main Authors Ghandehariun, S., Naterer, G.F., Dincer, I., Rosen, M.A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, a solar-based method of generating hydrogen from the copper–chlorine water-splitting cycle is developed and evaluated. An analysis is performed for solar plants with different hydrogen production capacities at three locations across Canada. Operating parameters of the solar field and the storage units are presented. The thermal efficiency and cost parameters of the hydrogen plant are also examined. A binary mixture of 60% NaNO 3 and 40% KNO 3 is used as the molten salt for solar energy storage. Different hydrogen production rates are analyzed. Since the solar irradiation in Calgary is much less than Toronto and Sarnia in the winter, it is found that a larger storage unit is required. The size of the storage unit increases for larger hydrogen production rates. The results support the feasibility of solar thermochemical Cu–Cl cycle as a promising and efficient pathway for large-scale production of hydrogen.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2010.05.028