Imperfect many-body localization in exchange-disordered isotropic spin chains
We investigate many-body localization in isotropic Heisenberg spin chains with the local exchange parameters being subject to quenched disorder. Such systems incorporate a nonabelian symmetry in their Hamiltonian by invariance under global SU(2)-rotations. Nonabelian symmetries are predicted to hind...
Saved in:
Published in | New journal of physics Vol. 25; no. 12; pp. 123002 - 123011 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate many-body localization in isotropic Heisenberg spin chains with the local exchange parameters being subject to quenched disorder. Such systems incorporate a nonabelian symmetry in their Hamiltonian by invariance under global SU(2)-rotations. Nonabelian symmetries are predicted to hinder the emergence of a many-body localized phase even in the presence of strong disorder. We report on numerical studies using exact diagonalization for chains of common spin length
1
/
2
and 1. The averaged consecutive-gap ratios display a transition compatible with a crossover from an ergodic phase at small disorder strength to an incompletely localized phase at stronger disorder. Studying the sample-to-sample variance of the averaged consecutive-gap ratio, we distinguish this incompletely localized phase from the fully many-body localized phase by its scaling behavior. |
---|---|
Bibliography: | NJP-116538.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ad0e1b |