Low-energy electron reflectivity from graphene: First-principles computations and approximate models

A computational method is developed whereby the reflectivity of low-energy electrons from a surface can be obtained from a first-principles solution of the electronic structure of the system. The method is applied to multilayer graphene. Two bands of reflectivity minima are found, one at 0–8eV and t...

Full description

Saved in:
Bibliographic Details
Published inUltramicroscopy Vol. 130; pp. 101 - 108
Main Authors Feenstra, R.M., Widom, M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A computational method is developed whereby the reflectivity of low-energy electrons from a surface can be obtained from a first-principles solution of the electronic structure of the system. The method is applied to multilayer graphene. Two bands of reflectivity minima are found, one at 0–8eV and the other at 14–22eV above the vacuum level. For a free-standing slab with n layers of graphene, each band contains n−1 zeroes in the reflectivity. Two additional image-potential type states form at the ends of the graphene slab, with energies just below the vacuum level, hence producing a total of 2n states. A tight-binding model is developed, with basis functions localized in the spaces between the graphene planes (and at the ends of the slab). The spectrum of states produced by the tight-binding model is found to be in good agreement with the zeros of reflectivity (i.e. transmission resonances) of the first-principles results. ► Developed method for simulation of low-energy electron reflectivity spectra. ► Reflectivity spectra of graphene are computed by a first-principles method. ► Comparison is made between results from first-principles and from a tight-binding model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3991
1879-2723
DOI:10.1016/j.ultramic.2013.02.011