The σ1 receptor regulates accumulation of GM1 ganglioside-enriched autophagosomes in astrocytes

Abstract GM1 gangliosides (GM1) are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. GM1 participate in modulating cell membrane properties, intercellular recognition, cell regulation, and signaling. We previ...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 340; pp. 176 - 187
Main Authors Kasahara, Rika, Yamamoto, Naoki, Suzuki, Kenji, Sobue, Kazuya
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 06.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract GM1 gangliosides (GM1) are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. GM1 participate in modulating cell membrane properties, intercellular recognition, cell regulation, and signaling. We previously demonstrated that GM1 are expressed inside astrocytes but not on the cell surface. We investigated whether the antipsychotic drug haloperidol induces GM1 expression in astrocytes, and found that the expression of GM1 was significantly upregulated by haloperidol in the intracellular vesicles of cultured astrocytes. The effects of haloperidol on GM1 expression acted through the σ1 receptor (σ1R), but not the dopamine-2 receptor. Inhibition of the ERK pathway blocked the induction of GM1 through the σ1R by haloperidol. Interestingly, this increase in GM1 expression induced the accumulation of autophagosomes in astrocytes. Moreover, the effect of haloperidol on the σ1R induced a decrease in GM1 in the cellular membrane of astrocytes. These findings suggested that the effects of haloperidol on the σ1R induced GM1 accumulation in the autophagosomes of astrocytes through activating the ERK pathway and a decrease in GM1 expression on the cell surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2016.10.058