Decentralized sequential change detection using physical layer fusion

The problem of decentralized sequential detection with conditionally independent observations is studied. The sensors form a star topology with a central node called fusion center as the hub. The sensors make noisy observations of a parameter that changes from an initial state to a final state at a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 7; no. 12; pp. 4999 - 5008
Main Authors Zacharias, L., Sundaresan, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The problem of decentralized sequential detection with conditionally independent observations is studied. The sensors form a star topology with a central node called fusion center as the hub. The sensors make noisy observations of a parameter that changes from an initial state to a final state at a random time where the random change time has a geometric distribution. The sensors amplify and forward the observations over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. The optimal transmission strategy at each stage is shown to be the one that maximizes a certain Ali-Silvey distance between the distributions for the hypotheses before and after the change. Simulations demonstrate that the proposed analog technique has lower detection delays when compared with existing schemes. Simulations further demonstrate that the energy-constrained formulation enables better use of the total available energy than the power-constrained formulation in the change detection problem.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/T-WC.2008.070808