Optimizing Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions

To achieve reliable packet transmission over a wireless link without feedback, we propose a layered coding approach that uses error-correction coding within each packet and erasure-correction coding across the packets. This layered approach is also applicable to an end-to-end data transport over a n...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 7; no. 11; pp. 4586 - 4595
Main Authors Berger, C., Shengli Zhou, Yonggang Wen, Willett, P., Pattipati, K.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.11.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To achieve reliable packet transmission over a wireless link without feedback, we propose a layered coding approach that uses error-correction coding within each packet and erasure-correction coding across the packets. This layered approach is also applicable to an end-to-end data transport over a network where a wireless link is the performance bottleneck. We investigate how to optimally combine the strengths of error- and erasure-correction coding to optimize the system performance with a given resource constraint, or to maximize the resource utilization efficiency subject to a prescribed performance. Our results determine the optimum tradeoff in splitting redundancy between error-correction coding and erasure-correction codes, which depends on the fading statistics and the average signal to noise ratio (SNR) of the wireless channel. For severe fading channels, such as Rayleigh fading channels, the tradeoff leans towards more redundancy on erasure-correction coding across packets, and less so on error-correction coding within each packet. For channels with better fading conditions, more redundancy can be spent on error-correction coding. The analysis has been extended to a limiting case with a large number of packets, and a scenario where only discrete rates are available via a finite number of transmission modes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1536-1276
1558-2248
DOI:10.1109/T-WC.2008.070581