Evidence for Contribution by Increased Cytoplasmic Na+ to the Insulinotropic Action of PACAP38 in HIT-T15 Cells
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic nerve terminals and stimulates insulin secretion. The insulinotropic effect of PACAP38 in insulin-producing HIT-T15 cells is accompanied by increases in cellular cAMP and cytoplasmic Ca2+([Ca2+]cyt). As also intrac...
Saved in:
Published in | The Journal of biological chemistry Vol. 273; no. 49; pp. 32602 - 32607 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.12.1998
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic nerve terminals and stimulates insulin secretion. The insulinotropic effect of PACAP38 in insulin-producing HIT-T15 cells is accompanied by increases in cellular cAMP and cytoplasmic Ca2+([Ca2+]cyt). As also intracellular Na+ is important for insulin secretion after glucose and other cAMP forming peptides, we examined the Na+ dependence of the insulinotropic effect of PACAP38 in HIT-T15 cells. We found that PACAP38 (100 nm)-induced insulin secretion was diminished by approximately 50% by removal of extracellular Na+(replaced by equimolar N-methyl-d-glucamine). In contrast, removal of Na+ did not diminish the formation of cellular cAMP (measured by radioimmunoassay) or the increase in [Ca2+]cyt (measured in FURA-2AM-loaded cell suspensions) induced by PACAP38. Furthermore, PACAP-38 increased the cytoplasmic Na+ ([Na+]cyt) in single HIT-T15 cells as measured by the fluorophore sodium-binding benzofran isophthalate. This increase was reduced by removal of extracellular Na+ and by inhibition of protein kinase A by H-89. We conclude that the insulinotropic action of PACAP38 is Na+-dependent. We propose that PACAP38 opens plasma membrane Na+ channels by an action partially mediated by cAMP and protein kinase A, and the subsequent raise in [Na+]cyt elicits insulin secretion by an as yet unsolved mechanism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.49.32602 |