Analytical drain thermal noise current model valid for deep submicron MOSFETs

In this paper, a physics-based MOSFET drain thermal noise current model valid for deep submicron channel lengths was derived and verified with experiments. It is found that the well-known /spl mu/Q/sub inv//L/sup 2/ formula, previously derived for long channels, remains valid for short channels. Car...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 51; no. 2; pp. 261 - 269
Main Authors Han, K., Shin, H., Lee, K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a physics-based MOSFET drain thermal noise current model valid for deep submicron channel lengths was derived and verified with experiments. It is found that the well-known /spl mu/Q/sub inv//L/sup 2/ formula, previously derived for long channels, remains valid for short channels. Carrier heating in the gradual channel region was taken into account implicitly with the form of diffusion noise source and then impedance field method taking velocity saturation effect was used to calculate the external drain thermal noise current. The derived model was verified by experimental noise for devices with channel lengths down to 0.18 /spl mu/m. Excellent agreement between measured and modeled drain thermal noise was obtained for the entire V/sub GS/ and V/sub DS/ bias regions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2003.821708