Analytical drain thermal noise current model valid for deep submicron MOSFETs
In this paper, a physics-based MOSFET drain thermal noise current model valid for deep submicron channel lengths was derived and verified with experiments. It is found that the well-known /spl mu/Q/sub inv//L/sup 2/ formula, previously derived for long channels, remains valid for short channels. Car...
Saved in:
Published in | IEEE transactions on electron devices Vol. 51; no. 2; pp. 261 - 269 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a physics-based MOSFET drain thermal noise current model valid for deep submicron channel lengths was derived and verified with experiments. It is found that the well-known /spl mu/Q/sub inv//L/sup 2/ formula, previously derived for long channels, remains valid for short channels. Carrier heating in the gradual channel region was taken into account implicitly with the form of diffusion noise source and then impedance field method taking velocity saturation effect was used to calculate the external drain thermal noise current. The derived model was verified by experimental noise for devices with channel lengths down to 0.18 /spl mu/m. Excellent agreement between measured and modeled drain thermal noise was obtained for the entire V/sub GS/ and V/sub DS/ bias regions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2003.821708 |