Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease

Cardiovascular disease (CVD) is the main cause of death in patients with kidney disease. Hypoxia plays a crucial role in the progression of chronic kidney disease (CKD) and cardiovascular disease, which is associated with fibrosis, inflammation, and oxidative injury. Previous studies have indicated...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 318; no. 2; pp. F388 - F401
Main Authors Uchida, Lisa, Tanaka, Tetsuhiro, Saito, Hisako, Sugahara, Mai, Wakashima, Takeshi, Fukui, Kenji, Nangaku, Masaomi
Format Journal Article
LanguageEnglish
Published United States 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cardiovascular disease (CVD) is the main cause of death in patients with kidney disease. Hypoxia plays a crucial role in the progression of chronic kidney disease (CKD) and cardiovascular disease, which is associated with fibrosis, inflammation, and oxidative injury. Previous studies have indicated that prolyl hydroxylase (PHD) inhibitors, stabilizers of hypoxia-inducible factors (HIFs), can be used to treat acute organ injuries such as renal ischemia-reperfusion, myocardial infarction, and, in some contexts, CKD. However, the effects of PHD inhibitors on cardiovascular complications in CKD remain unknown. In the present study, we investigated whether HIF activation has a beneficial effect on kidney and cardiovascular outcomes in the remnant kidney model. We used the 5/6 nephrectomy model with the nitric oxide synthase inhibitor -nitro-l-arginine (20 mg/L in the drinking water). Rats received diet with 0.005% enarodustat (PHD inhibitor) or vehicle for 8 wk starting 2 wk before 5/6 nephrectomy. Activation of HIF by the PHD inhibitor reduced cardiac hypertrophy and ameliorated myocardial fibrosis in association with restored capillary density and improvement in mitochondrial morphology. With regard to kidneys, enarodustat ameliorated fibrosis in association with reduced proinflammatory cytokine expression, reduced apoptosis, and restored capillary density, even though renal endpoints such as proteinuria and serum creatinine levels were not significantly affected by enarodustat, except for blood urea nitrogen levels at 4 wk. In addition, cardiac hypertrophy marker genes, including atrial natriuretic peptide, were suppressed in P19CL6 cells treated with enarodustat. These findings suggest that PHD inhibitors might show beneficial effects in cardiovascular complications caused by CKD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00419.2019