Biophysical characterization of the DNA interaction with the biogenic polyamine putrescine: A single molecule study
We have performed a biophysical characterization, at single molecule level, of the interaction between the DNA molecule and the biogenic polyamine putrescine. By using force spectroscopy, we were able to monitor the complexes formation as putrescine is added to the sample, determining the mechanical...
Saved in:
Published in | International journal of biological macromolecules Vol. 112; pp. 175 - 178 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have performed a biophysical characterization, at single molecule level, of the interaction between the DNA molecule and the biogenic polyamine putrescine. By using force spectroscopy, we were able to monitor the complexes formation as putrescine is added to the sample, determining the mechanical properties of such complexes and the physicochemical (binding) parameters of the interaction for three different ionic strengths. In particular, it was shown that the behavior of the equilibrium binding constant as a function of the counterion concentration deviates from the prediction of the Record-Lohman model. The measured constants were (1.3 ± 0.2) × 105 M- 1 for [Na] = 150 mM, (2.1 ± 0.2) × 105 M- 1 for [Na] = 10 mM, and (2.2 ± 0.3) × 105 M- 1 for [Na] = 1 mM. The cooperativity degree of the binding reaction, on the other hand, increases with the ionic strength. From these analysis, the DNA-putrescine binding mechanisms are inferred, and a comparison with results reported for ordinary bivalent ions like magnesium is performed. Such study provides new insights on the general behavior of the DNA interactions with biogenic polyamines. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2018.01.142 |