Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers
The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elem...
Saved in:
Published in | Science advances Vol. 7; no. 25 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abe8638 |