Hydrogen‐Bonded Organic Framework for High‐Performance Lithium/Sodium‐Iodine Organic Batteries
The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organ...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 48; pp. e202213276 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.11.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.
A complex of a hydrogen‐bonded organic framework (HOF) linked with Ti3C2Tx MXene was designed and adopted as electrodes with excellent cyclic stability and rate‐performances in Li‐I2 and Na‐I2 batteries. |
---|---|
AbstractList | The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti3 C2 Tx MXene complex (HOF@Ti3 C2 Tx ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2 -based batteries. The I2 /HOF@Ti3 C2 Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g-1 at 0.2 C after repeated cycling for Li-I2 and Na-I2 batteries, respectively. This work can gain insights into the HOF-related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti3 C2 Tx MXene complex (HOF@Ti3 C2 Tx ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2 -based batteries. The I2 /HOF@Ti3 C2 Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g-1 at 0.2 C after repeated cycling for Li-I2 and Na-I2 batteries, respectively. This work can gain insights into the HOF-related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. The rechargeable lithium/sodium‐iodine battery (Li/Na‐I 2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti 3 C 2 T x MXene complex (HOF@Ti 3 C 2 T x ) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I 2 ‐based batteries. The I 2 /HOF@Ti 3 C 2 T x exhibits large reversible capacities of 260.2 and 207.6 mAh g −1 at 0.2 C after repeated cycling for Li‐I 2 and Na‐I 2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. A complex of a hydrogen‐bonded organic framework (HOF) linked with Ti3C2Tx MXene was designed and adopted as electrodes with excellent cyclic stability and rate‐performances in Li‐I2 and Na‐I2 batteries. |
Author | Cao, Yingnan Zhang, Yifan Guo, Chaofei Wang, Yong Han, Bo Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Chaofei surname: Guo fullname: Guo, Chaofei organization: Shanghai University – sequence: 2 givenname: Bo surname: Han fullname: Han, Bo organization: Central South University – sequence: 3 givenname: Weiwei orcidid: 0000-0003-3949-6026 surname: Sun fullname: Sun, Weiwei organization: Shanghai University – sequence: 4 givenname: Yingnan surname: Cao fullname: Cao, Yingnan organization: Shanghai University – sequence: 5 givenname: Yifan surname: Zhang fullname: Zhang, Yifan organization: Shanghai University – sequence: 6 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Shanghai University |
BookMark | eNqFkM1KxDAUhYMo-Lt1XXDjpmN-mqRdqqgzMKigrksmuRmjbaJJB5mdj-Az-iRGRhQEcXXP5X7nJJxttO6DB4T2CR4RjOmR8g5GFFNKGJViDW0RTknJpGTrWVeMlbLmZBNtp_SQ-brGYguZ8dLEMAf__vp2ErwBU1zFeY7SxXlUPbyE-FjYEIuxm99n5hpi3nrlNRRTN9y7RX90E0we-TjJwsN3wIkaBogO0i7asKpLsPc1d9Dd-dnt6bicXl1MTo-npa6IEKU0urEYG26JFrXgdoaF5Txr28xmSlNrwNaS17U1pqmkVkJJzRpmuFK8IWwHHa5yn2J4XkAa2t4lDV2nPIRFaqmkRDBJG5zRg1_oQ1hEn3-XKSYrLnlVZ2q0onQMKUWw7VN0vYrLluD2s_T2s_T2u_RsqH4ZtBvU4IIfonLd37ZmZXtxHSz_eaQ9vpyc_Xg_AK7UnPU |
CitedBy_id | crossref_primary_10_1002_ange_202316208 crossref_primary_10_1016_j_seppur_2024_126728 crossref_primary_10_1002_advs_202403399 crossref_primary_10_1002_smll_202309353 crossref_primary_10_1016_j_nxmate_2024_100323 crossref_primary_10_1002_ange_202312001 crossref_primary_10_1016_j_cej_2024_155230 crossref_primary_10_1039_D4MH00313F crossref_primary_10_1002_bte2_20230033 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1002_celc_202300607 crossref_primary_10_1038_s41467_025_57316_5 crossref_primary_10_1002_cey2_632 crossref_primary_10_1002_adma_202305575 crossref_primary_10_1016_j_giant_2023_100181 crossref_primary_10_1002_cssc_202400886 crossref_primary_10_1016_j_micromeso_2024_113348 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1021_acsaem_4c02862 crossref_primary_10_1016_j_est_2025_116173 crossref_primary_10_1002_smll_202304691 crossref_primary_10_1002_adfm_202211979 crossref_primary_10_1021_acs_energyfuels_3c02328 crossref_primary_10_1016_j_matt_2023_04_019 crossref_primary_10_1039_D4CE00004H crossref_primary_10_1016_j_est_2024_110820 crossref_primary_10_1021_acsaem_3c00828 crossref_primary_10_1038_s41570_024_00597_z crossref_primary_10_1002_advs_202500789 crossref_primary_10_1002_adfm_202306206 crossref_primary_10_1002_adfm_202406540 crossref_primary_10_1021_acs_inorgchem_4c02886 crossref_primary_10_1002_adfm_202314189 crossref_primary_10_1021_acs_analchem_4c02913 crossref_primary_10_1039_D3TA05816F crossref_primary_10_20517_energymater_2024_194 crossref_primary_10_1016_j_jcis_2024_10_092 crossref_primary_10_1016_j_ensm_2024_103557 crossref_primary_10_1002_anie_202415759 crossref_primary_10_1002_smll_202401457 crossref_primary_10_1016_j_jechem_2024_12_062 crossref_primary_10_1002_adfm_202314851 crossref_primary_10_1007_s41918_024_00218_9 crossref_primary_10_1002_anie_202302143 crossref_primary_10_1002_ange_202311480 crossref_primary_10_1002_anie_202316208 crossref_primary_10_1021_acsami_4c19706 crossref_primary_10_1002_anie_202312001 crossref_primary_10_1002_anie_202311480 crossref_primary_10_1002_ange_202302143 crossref_primary_10_1016_j_cej_2024_152612 crossref_primary_10_1002_adfm_202500197 crossref_primary_10_1002_aenm_202302187 crossref_primary_10_1002_adfm_202413888 |
Cites_doi | 10.1002/adma.201902399 10.1016/j.flatc.2021.100330 10.1021/jacs.0c02406 10.1002/anie.202009871 10.1002/anie.201805472 10.1039/C7RA09349G 10.1021/acsanm.9b01194 10.1038/s41467-022-30663-3 10.1016/j.cej.2020.125873 10.1002/aenm.201300627 10.1016/j.nanoen.2018.12.084 10.1021/acsami.7b02943 10.1002/anie.202113576 10.1002/aenm.201601885 10.1021/acsnano.9b09802 10.1002/ange.202113576 10.1021/acsami.8b03212 10.1002/ange.202009871 10.1002/smll.201901351 10.1038/s41467-017-00649-7 10.1021/acsnano.8b02849 10.1002/anie.201800354 10.1021/acsami.5b11973 10.1126/science.aag2421 10.1002/anie.202117511 10.1021/jacs.0c04885 10.1002/adma.201905361 10.1021/acsnano.9b09541 10.1002/celc.202100458 10.1038/s41467-020-17757-6 10.1021/acsnano.6b07668 10.1021/acsnano.2c06220 10.1021/jacs.0c05277 10.1002/ange.202117511 10.1002/ange.201800354 10.1039/C6TA00706F 10.1039/C6TA02796B 10.1021/acs.langmuir.1c02915 10.1002/anie.202006926 10.1002/ente.202000857 10.1038/ncomms12122 10.1002/anie.201410077 10.1039/C8CC02616E 10.1021/acsami.1c21026 10.1016/j.ensm.2017.08.010 10.1039/C8TA01470A 10.1039/C6CC02964G 10.1039/C7NR02311A 10.1002/ange.201805472 10.1021/jacs.7b03204 10.1002/ange.201410077 10.1038/s41570-022-00384-8 10.1021/acsaem.1c01068 10.1021/acs.nanolett.7b03290 10.1002/adma.202000287 10.1021/acs.nanolett.5b02116 10.1021/nn102227u 10.1038/s41560-022-00993-z 10.1016/j.jpowsour.2020.228212 10.1021/acs.chemmater.0c00359 10.1039/C7RA03402D 10.1002/ange.202006926 10.1021/acsnano.9b00165 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202213276 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202213276 ANIE202213276 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Innovative Research Team for Local High-level Universities – fundername: National Natural Science Foundation of China funderid: 52073170 – fundername: Shanghai Municipal Education Commission funderid: Innovative Project 2019-01-07-00-09-E00021 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4166-7dc9f00d5f1c6865fb06f55c68f9bbac2fdef87588fdd947ca6a7c393d5aa5913 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:35:36 EDT 2025 Sun Jul 13 03:18:22 EDT 2025 Tue Jul 01 01:18:30 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Wed Jan 22 16:23:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4166-7dc9f00d5f1c6865fb06f55c68f9bbac2fdef87588fdd947ca6a7c393d5aa5913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3489-7672 0000-0003-3949-6026 |
PQID | 2737457548 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2721637290 proquest_journals_2737457548 crossref_primary_10_1002_anie_202213276 crossref_citationtrail_10_1002_anie_202213276 wiley_primary_10_1002_anie_202213276_ANIE202213276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 25, 2022 |
PublicationDateYYYYMMDD | 2022-11-25 |
PublicationDate_xml | – month: 11 year: 2022 text: November 25, 2022 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 8 2015; 15 2017; 7 2017; 8 2013; 3 2021; 4 2019; 31 2020; 142 2019; 2 2019; 13 2019; 57 2019; 15 2020 2020; 59 132 2016; 52 2020; 14 2020; 12 2020; 463 2020; 11 2020; 32 2017; 9 2017; 139 2016; 4 2018; 6 2022 2022; 61 134 2016; 7 2017; 17 2022; 6 2022; 7 2018 2018; 57 130 2017; 11 2021 2021; 60 133 2022; 13 2015 2015; 54 127 2016; 353 2022; 14 2022; 31 2020; 399 2018; 12 2018; 10 2018; 54 2010; 4 2022; 16 2022; 38 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Feng J. F. (e_1_2_7_32_1) 2020; 12 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_37_2 e_1_2_7_39_1 (e_1_2_7_43_2) 2022; 134 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 (e_1_2_7_3_2) 2022; 134 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 142 start-page: 12478 year: 2020 end-page: 12485 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 7691 7817 year: 2018 2018 end-page: 7696 7822 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 8017 year: 2018 end-page: 8028 publication-title: ACS Nano – volume: 54 127 start-page: 574 584 year: 2015 2015 end-page: 577 587 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 389 year: 2022 end-page: 404 publication-title: Nat. Chem. Rev. – volume: 7 start-page: 222 year: 2022 end-page: 228 publication-title: Nat. Energy – volume: 4 start-page: 8541 year: 2016 end-page: 8547 publication-title: J. Mater. Chem. A – volume: 54 start-page: 6792 year: 2018 end-page: 6795 publication-title: Chem. Commun. – volume: 142 start-page: 7218 year: 2020 end-page: 7224 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 29854 year: 2020 end-page: 29860 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 55060 year: 2017 end-page: 55066 publication-title: RSC Adv. – volume: 139 start-page: 7172 year: 2017 end-page: 7175 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 10098 year: 2016 end-page: 10104 publication-title: J. Mater. Chem. A – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 38 start-page: 1533 year: 2022 end-page: 1539 publication-title: Langmuir – volume: 16 start-page: 13554 year: 2022 end-page: 13572 publication-title: ACS nano – volume: 59 132 start-page: 22392 22578 year: 2020 2020 end-page: 22396 22582 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 62 year: 2018 end-page: 68 publication-title: Energy Storage Mater. – volume: 60 133 start-page: 12636 12744 year: 2021 2021 end-page: 12647 12755 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 12743 year: 2020 end-page: 12750 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 7012 year: 2021 end-page: 7019 publication-title: ACS Appl. Energy Mater. – volume: 17 start-page: 6893 year: 2017 end-page: 6899 publication-title: Nano Lett. – volume: 10 start-page: 17933 year: 2018 end-page: 17941 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3947 year: 2020 publication-title: Nat. Commun. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 7005 year: 2010 end-page: 7013 publication-title: ACS Nano – volume: 32 start-page: 3480 year: 2020 end-page: 3488 publication-title: Chem. Mater. – volume: 57 130 start-page: 12650 12832 year: 2018 2018 end-page: 12655 12837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 463 year: 2020 publication-title: J. Power Sources – volume: 8 start-page: 3155 year: 2021 end-page: 3160 publication-title: ChemElectroChem – volume: 14 start-page: 8955 year: 2022 end-page: 8962 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 24698 year: 2017 end-page: 24708 publication-title: RSC Adv. – volume: 9 start-page: 9365 year: 2017 end-page: 9375 publication-title: Nanoscale – volume: 7 start-page: 12122 year: 2016 publication-title: Nat. Commun. – volume: 11 start-page: 2459 year: 2017 end-page: 2469 publication-title: ACS Nano – volume: 31 year: 2022 publication-title: FlatChem – volume: 13 start-page: 3600 year: 2019 end-page: 3607 publication-title: ACS Nano – volume: 353 start-page: 1137 year: 2016 end-page: 1140 publication-title: Science – volume: 8 start-page: 527 year: 2017 publication-title: Nat. Commun. – volume: 14 start-page: 1176 year: 2020 end-page: 1184 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 9 start-page: 20508 year: 2017 end-page: 20518 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 9019 year: 2018 end-page: 9031 publication-title: J. Mater. Chem. A – volume: 8 start-page: 6051 year: 2016 end-page: 6060 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 14 start-page: 2788 year: 2020 end-page: 2797 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 start-page: 1630 year: 2013 end-page: 1635 publication-title: Adv. Eng. Mater. – volume: 15 start-page: 5982 year: 2015 end-page: 5987 publication-title: Nano Lett. – volume: 52 start-page: 7249 year: 2016 end-page: 7252 publication-title: Chem. Commun. – volume: 13 start-page: 2878 year: 2022 publication-title: Nat. Commun. – volume: 57 start-page: 692 year: 2019 end-page: 702 publication-title: Nano Energy – volume: 2 start-page: 6087 year: 2019 end-page: 6091 publication-title: ACS Appl. Nano Mater. – ident: e_1_2_7_44_1 doi: 10.1002/adma.201902399 – ident: e_1_2_7_47_1 doi: 10.1016/j.flatc.2021.100330 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.0c02406 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202009871 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201805472 – ident: e_1_2_7_48_1 doi: 10.1039/C7RA09349G – volume: 12 start-page: 29854 year: 2020 ident: e_1_2_7_32_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_55_1 doi: 10.1021/acsanm.9b01194 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-022-30663-3 – ident: e_1_2_7_26_1 doi: 10.1016/j.cej.2020.125873 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201300627 – ident: e_1_2_7_51_1 doi: 10.1016/j.nanoen.2018.12.084 – ident: e_1_2_7_7_1 doi: 10.1021/acsami.7b02943 – ident: e_1_2_7_43_1 doi: 10.1002/anie.202113576 – ident: e_1_2_7_52_1 doi: 10.1002/aenm.201601885 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.9b09802 – volume: 134 start-page: e202113576 year: 2022 ident: e_1_2_7_43_2 publication-title: Angew. Chem. doi: 10.1002/ange.202113576 – ident: e_1_2_7_9_1 doi: 10.1021/acsami.8b03212 – ident: e_1_2_7_20_2 doi: 10.1002/ange.202009871 – ident: e_1_2_7_35_1 doi: 10.1002/smll.201901351 – ident: e_1_2_7_15_1 doi: 10.1038/s41467-017-00649-7 – ident: e_1_2_7_34_1 doi: 10.1021/acsnano.8b02849 – ident: e_1_2_7_37_1 doi: 10.1002/anie.201800354 – ident: e_1_2_7_39_1 doi: 10.1021/acsami.5b11973 – ident: e_1_2_7_33_1 doi: 10.1126/science.aag2421 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202117511 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.0c04885 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201905361 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.9b09541 – ident: e_1_2_7_19_1 doi: 10.1002/celc.202100458 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-020-17757-6 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.6b07668 – ident: e_1_2_7_8_1 doi: 10.1021/acsnano.2c06220 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.0c05277 – volume: 134 start-page: e202117511 year: 2022 ident: e_1_2_7_3_2 publication-title: Angew. Chem. doi: 10.1002/ange.202117511 – ident: e_1_2_7_37_2 doi: 10.1002/ange.201800354 – ident: e_1_2_7_13_1 doi: 10.1039/C6TA00706F – ident: e_1_2_7_53_1 doi: 10.1039/C6TA02796B – ident: e_1_2_7_22_1 doi: 10.1021/acs.langmuir.1c02915 – ident: e_1_2_7_40_1 doi: 10.1002/anie.202006926 – ident: e_1_2_7_14_1 doi: 10.1002/ente.202000857 – ident: e_1_2_7_50_1 doi: 10.1038/ncomms12122 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201410077 – ident: e_1_2_7_18_1 doi: 10.1039/C8CC02616E – ident: e_1_2_7_57_1 doi: 10.1021/acsami.1c21026 – ident: e_1_2_7_11_1 doi: 10.1016/j.ensm.2017.08.010 – ident: e_1_2_7_17_1 doi: 10.1039/C8TA01470A – ident: e_1_2_7_27_1 doi: 10.1039/C6CC02964G – ident: e_1_2_7_45_1 doi: 10.1039/C7NR02311A – ident: e_1_2_7_24_2 doi: 10.1002/ange.201805472 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.7b03204 – ident: e_1_2_7_25_2 doi: 10.1002/ange.201410077 – ident: e_1_2_7_1_1 doi: 10.1038/s41570-022-00384-8 – ident: e_1_2_7_46_1 doi: 10.1021/acsaem.1c01068 – ident: e_1_2_7_12_1 doi: 10.1021/acs.nanolett.7b03290 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202000287 – ident: e_1_2_7_16_1 doi: 10.1021/acs.nanolett.5b02116 – ident: e_1_2_7_54_1 doi: 10.1021/nn102227u – ident: e_1_2_7_2_1 doi: 10.1038/s41560-022-00993-z – ident: e_1_2_7_41_1 doi: 10.1016/j.jpowsour.2020.228212 – ident: e_1_2_7_56_1 doi: 10.1021/acs.chemmater.0c00359 – ident: e_1_2_7_42_1 doi: 10.1039/C7RA03402D – ident: e_1_2_7_40_2 doi: 10.1002/ange.202006926 – ident: e_1_2_7_49_1 doi: 10.1021/acsnano.9b00165 |
SSID | ssj0028806 |
Score | 2.5889714 |
Snippet | The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded... The rechargeable lithium/sodium‐iodine battery (Li/Na‐I 2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded... The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202213276 |
SubjectTerms | Adsorptivity Cycles Encapsulation Energy demand Energy storage Hydrogen Hydrogen bonding Hydrogen-Bonded Organic Framework Iodides Iodine Lithium Lithium/Sodium-Iodine Organic Batteries Metal ions Monomers Nucleation Reaction kinetics Reaction mechanisms Rechargeable batteries Redox Reaction Redox reactions Sodium Ti3C2Tx MXene |
Title | Hydrogen‐Bonded Organic Framework for High‐Performance Lithium/Sodium‐Iodine Organic Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213276 https://www.proquest.com/docview/2737457548 https://www.proquest.com/docview/2721637290 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqtVIgie1qabbJI9ilha0SJqwVvYJxY1lT4OevIn-Bv9Jc40TWoFEfSUDTubx-7s7jfJzDeEHMKO52Qj4FTwxNKQGU6V4j6VzjYUppIWCgOcLztRqxue3_G7L1H8OT9E-cENZ8ZkvcYJLtWwPiMNxQhssO8YA3sqRs5tdNhCVHRd8kcxUM48vCgIKGahL1gbfVafbz6_K82g5lfAOtlxmitEFs-aO5o8HI9H6li_fqNx_M_LrJLlKRz1TnL9WSMLNlsni6dFFrgNYlovZtAHLft4e8cUxNZ4efim9pqFX5cHwNdDhxGQuZoFIngXvdF9b_xUv-kbOEBlGwqZLS-Qc3uCqb5Jus2z29MWnWZmoBoAXERjo4XzfcNdQ0dJxJ3yI8c5lJ1QSmrmjHVgCSWJM0aEsZaRjHUgAsOl5KIRbJFK1s_sNvG4McwKjIHgQajCWCktpEsiBYuwBvOuSmgxMqme0pZj9ozHNCdcZin2XVr2XZUclfLPOWHHj5K1YqDT6cQdpoDm4hAgbJhUyUFZDX2O_1FkZvtjlGGAYsEq8auETUb1lzulJ532WXm285dGu2QJyxgFyXiNVEaDsd0DODRS-xOV_wR84AVN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXoPyILYUGCcTJ3awTJ_GBQ9V2tUu3KwSt1Fvwr1jRZqvurqr21Efoq_AqPAJPwszmZykSQkLqgVOc2HES2-P5xvF8A_AaNZ5XnUgwKTLHYm4F01qETHnX0RRKWmpycN4fJr3D-P2ROFqCb7UvTMkP0Sy4kWTM52sScFqQbi9YQ8kFGw08ztGgSpNqX-WeuzhHq23yrr-DXfyG8-7uwXaPVYEFmEH8kbDUGunD0ArfMUmWCK_DxAuBaS-1VoZ76zwC-Szz1so4NSpRqYlkZIVSQnYirPcO3KUw4kTXv_OxYaziKA6lQ1MUMYp7X_NEhrx9831v6sEFuP0VIs91XPcBfK9bp9za8nVzNtWb5vI34sj_qvkewv0KcQdbpYiswpIrHsHKdh3o7jHY3oU9G6Mg_bi6pijLzgalh6oJuvXWtQCxfUB7YrDMh4WvRTAYTb-MZiftT2OLB8zsY6JwTQUlfenITZ7A4a185FNYLsaFewaBsJY7SW4eIop1nGptpPJZolHPGLRgW8DqoZCbipmdAoQc5yWnNM-pr_Kmr1rwtil_WnKS_LHkej2y8mpumuQIWNMYUXqcteBVk41tTr-KVOHGMyrDEaij4RW2gM-H0V-elG8N-7vN2dq_3LQBK72D_UE-6A_3nsM9uk5On1ysw_L0bOZeIPqb6pdzeQvg822P0J_sp2XM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RaJcgAIVgbYYCcRpG2ftXXsPHKqmUdKWqKKt1JvZXzVqcaImESqnPkIfhVfhFfoknY1_QpEQElIPnLy2x2t7d2b3G3vnG4B3OOM52YoYESy1JKaGEaVYSKSzLeVTSQvlA5w_9Xn3ON49YScL8KOKhSn4IeoPbt4yZuO1N_CRcc05aaiPwEb_jlL0pxJeLqvcs5ff0Gkbf-y1sYffU9rZOdrukjKvANEIPzhJjBYuDA1zLc1TzpwKuWMMy04oJTV1xjrE8WnqjBFxoiWXiY5EZJiUTLQirHcRHsQ8FD5ZRPtzTVhF0RqKeKYoIj7tfUUTGdLm3ee9Ow3Ose2vCHk2xXWewM-qcYqVLWeb04na1N9_4438n1rvKTwu8XawVRjICizY_Bksb1dp7p6D6V6aiyGa0c3Vtc-xbE1QxKfqoFMtXAsQ2Qd-RQzKHMwjLYL9weR0MP3aPBwa3ODJHhZyW1dQkJcO7PgFHN_LS67CUj7M7UsImDHUCh_kwaJYxYlSWkiXcoWzjEb_tQGk0oRMl7zsPj3IeVYwStPM91VW91UDPtTyo4KR5I-Sa5ViZeXINM4QriYxYvQ4bcDb-jS2uf9RJHM7nHoZijAd3a6wAXSmRX-5U7bV7-3Ue6_-5aI38PCg3cn2e_291_DIH_YRn5StwdLkYmrXEfpN1MbM2gL4ct8KegtG0mR7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-Bonded+Organic+Framework+for+High-Performance+Lithium%2FSodium-Iodine+Organic+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Chaofei&rft.au=Han%2C+Bo&rft.au=Sun%2C+Weiwei&rft.au=Cao%2C+Yingnan&rft.date=2022-11-25&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=48&rft.spage=e202213276&rft_id=info:doi/10.1002%2Fanie.202213276&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |