Hydrogen‐Bonded Organic Framework for High‐Performance Lithium/Sodium‐Iodine Organic Batteries

The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organ...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 48; pp. e202213276 - n/a
Main Authors Guo, Chaofei, Han, Bo, Sun, Weiwei, Cao, Yingnan, Zhang, Yifan, Wang, Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.11.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. A complex of a hydrogen‐bonded organic framework (HOF) linked with Ti3C2Tx MXene was designed and adopted as electrodes with excellent cyclic stability and rate‐performances in Li‐I2 and Na‐I2 batteries.
AbstractList The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti3 C2 Tx MXene complex (HOF@Ti3 C2 Tx ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2 -based batteries. The I2 /HOF@Ti3 C2 Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g-1 at 0.2 C after repeated cycling for Li-I2 and Na-I2 batteries, respectively. This work can gain insights into the HOF-related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti3 C2 Tx MXene complex (HOF@Ti3 C2 Tx ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2 -based batteries. The I2 /HOF@Ti3 C2 Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g-1 at 0.2 C after repeated cycling for Li-I2 and Na-I2 batteries, respectively. This work can gain insights into the HOF-related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.
The rechargeable lithium/sodium‐iodine battery (Li/Na‐I 2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti 3 C 2 T x MXene complex (HOF@Ti 3 C 2 T x ) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I 2 ‐based batteries. The I 2 /HOF@Ti 3 C 2 T x exhibits large reversible capacities of 260.2 and 207.6 mAh g −1 at 0.2 C after repeated cycling for Li‐I 2 and Na‐I 2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.
The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.
The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded organic framework (HOF) linked to the Ti3C2Tx MXene complex (HOF@Ti3C2Tx) has been presented for iodine loading. HOF is self‐assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2‐based batteries. The I2/HOF@Ti3C2Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g−1 at 0.2 C after repeated cycling for Li‐I2 and Na‐I2 batteries, respectively. This work can gain insights into the HOF‐related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions. A complex of a hydrogen‐bonded organic framework (HOF) linked with Ti3C2Tx MXene was designed and adopted as electrodes with excellent cyclic stability and rate‐performances in Li‐I2 and Na‐I2 batteries.
Author Cao, Yingnan
Zhang, Yifan
Guo, Chaofei
Wang, Yong
Han, Bo
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Chaofei
  surname: Guo
  fullname: Guo, Chaofei
  organization: Shanghai University
– sequence: 2
  givenname: Bo
  surname: Han
  fullname: Han, Bo
  organization: Central South University
– sequence: 3
  givenname: Weiwei
  orcidid: 0000-0003-3949-6026
  surname: Sun
  fullname: Sun, Weiwei
  organization: Shanghai University
– sequence: 4
  givenname: Yingnan
  surname: Cao
  fullname: Cao, Yingnan
  organization: Shanghai University
– sequence: 5
  givenname: Yifan
  surname: Zhang
  fullname: Zhang, Yifan
  organization: Shanghai University
– sequence: 6
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Shanghai University
BookMark eNqFkM1KxDAUhYMo-Lt1XXDjpmN-mqRdqqgzMKigrksmuRmjbaJJB5mdj-Az-iRGRhQEcXXP5X7nJJxttO6DB4T2CR4RjOmR8g5GFFNKGJViDW0RTknJpGTrWVeMlbLmZBNtp_SQ-brGYguZ8dLEMAf__vp2ErwBU1zFeY7SxXlUPbyE-FjYEIuxm99n5hpi3nrlNRRTN9y7RX90E0we-TjJwsN3wIkaBogO0i7asKpLsPc1d9Dd-dnt6bicXl1MTo-npa6IEKU0urEYG26JFrXgdoaF5Txr28xmSlNrwNaS17U1pqmkVkJJzRpmuFK8IWwHHa5yn2J4XkAa2t4lDV2nPIRFaqmkRDBJG5zRg1_oQ1hEn3-XKSYrLnlVZ2q0onQMKUWw7VN0vYrLluD2s_T2s_T2u_RsqH4ZtBvU4IIfonLd37ZmZXtxHSz_eaQ9vpyc_Xg_AK7UnPU
CitedBy_id crossref_primary_10_1002_ange_202316208
crossref_primary_10_1016_j_seppur_2024_126728
crossref_primary_10_1002_advs_202403399
crossref_primary_10_1002_smll_202309353
crossref_primary_10_1016_j_nxmate_2024_100323
crossref_primary_10_1002_ange_202312001
crossref_primary_10_1016_j_cej_2024_155230
crossref_primary_10_1039_D4MH00313F
crossref_primary_10_1002_bte2_20230033
crossref_primary_10_1002_ange_202415759
crossref_primary_10_1002_celc_202300607
crossref_primary_10_1038_s41467_025_57316_5
crossref_primary_10_1002_cey2_632
crossref_primary_10_1002_adma_202305575
crossref_primary_10_1016_j_giant_2023_100181
crossref_primary_10_1002_cssc_202400886
crossref_primary_10_1016_j_micromeso_2024_113348
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1021_acsaem_4c02862
crossref_primary_10_1016_j_est_2025_116173
crossref_primary_10_1002_smll_202304691
crossref_primary_10_1002_adfm_202211979
crossref_primary_10_1021_acs_energyfuels_3c02328
crossref_primary_10_1016_j_matt_2023_04_019
crossref_primary_10_1039_D4CE00004H
crossref_primary_10_1016_j_est_2024_110820
crossref_primary_10_1021_acsaem_3c00828
crossref_primary_10_1038_s41570_024_00597_z
crossref_primary_10_1002_advs_202500789
crossref_primary_10_1002_adfm_202306206
crossref_primary_10_1002_adfm_202406540
crossref_primary_10_1021_acs_inorgchem_4c02886
crossref_primary_10_1002_adfm_202314189
crossref_primary_10_1021_acs_analchem_4c02913
crossref_primary_10_1039_D3TA05816F
crossref_primary_10_20517_energymater_2024_194
crossref_primary_10_1016_j_jcis_2024_10_092
crossref_primary_10_1016_j_ensm_2024_103557
crossref_primary_10_1002_anie_202415759
crossref_primary_10_1002_smll_202401457
crossref_primary_10_1016_j_jechem_2024_12_062
crossref_primary_10_1002_adfm_202314851
crossref_primary_10_1007_s41918_024_00218_9
crossref_primary_10_1002_anie_202302143
crossref_primary_10_1002_ange_202311480
crossref_primary_10_1002_anie_202316208
crossref_primary_10_1021_acsami_4c19706
crossref_primary_10_1002_anie_202312001
crossref_primary_10_1002_anie_202311480
crossref_primary_10_1002_ange_202302143
crossref_primary_10_1016_j_cej_2024_152612
crossref_primary_10_1002_adfm_202500197
crossref_primary_10_1002_aenm_202302187
crossref_primary_10_1002_adfm_202413888
Cites_doi 10.1002/adma.201902399
10.1016/j.flatc.2021.100330
10.1021/jacs.0c02406
10.1002/anie.202009871
10.1002/anie.201805472
10.1039/C7RA09349G
10.1021/acsanm.9b01194
10.1038/s41467-022-30663-3
10.1016/j.cej.2020.125873
10.1002/aenm.201300627
10.1016/j.nanoen.2018.12.084
10.1021/acsami.7b02943
10.1002/anie.202113576
10.1002/aenm.201601885
10.1021/acsnano.9b09802
10.1002/ange.202113576
10.1021/acsami.8b03212
10.1002/ange.202009871
10.1002/smll.201901351
10.1038/s41467-017-00649-7
10.1021/acsnano.8b02849
10.1002/anie.201800354
10.1021/acsami.5b11973
10.1126/science.aag2421
10.1002/anie.202117511
10.1021/jacs.0c04885
10.1002/adma.201905361
10.1021/acsnano.9b09541
10.1002/celc.202100458
10.1038/s41467-020-17757-6
10.1021/acsnano.6b07668
10.1021/acsnano.2c06220
10.1021/jacs.0c05277
10.1002/ange.202117511
10.1002/ange.201800354
10.1039/C6TA00706F
10.1039/C6TA02796B
10.1021/acs.langmuir.1c02915
10.1002/anie.202006926
10.1002/ente.202000857
10.1038/ncomms12122
10.1002/anie.201410077
10.1039/C8CC02616E
10.1021/acsami.1c21026
10.1016/j.ensm.2017.08.010
10.1039/C8TA01470A
10.1039/C6CC02964G
10.1039/C7NR02311A
10.1002/ange.201805472
10.1021/jacs.7b03204
10.1002/ange.201410077
10.1038/s41570-022-00384-8
10.1021/acsaem.1c01068
10.1021/acs.nanolett.7b03290
10.1002/adma.202000287
10.1021/acs.nanolett.5b02116
10.1021/nn102227u
10.1038/s41560-022-00993-z
10.1016/j.jpowsour.2020.228212
10.1021/acs.chemmater.0c00359
10.1039/C7RA03402D
10.1002/ange.202006926
10.1021/acsnano.9b00165
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202213276
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202213276
ANIE202213276
Genre article
GrantInformation_xml – fundername: Shanghai Innovative Research Team for Local High-level Universities
– fundername: National Natural Science Foundation of China
  funderid: 52073170
– fundername: Shanghai Municipal Education Commission
  funderid: Innovative Project 2019-01-07-00-09-E00021
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4166-7dc9f00d5f1c6865fb06f55c68f9bbac2fdef87588fdd947ca6a7c393d5aa5913
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:35:36 EDT 2025
Sun Jul 13 03:18:22 EDT 2025
Tue Jul 01 01:18:30 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Jan 22 16:23:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-7dc9f00d5f1c6865fb06f55c68f9bbac2fdef87588fdd947ca6a7c393d5aa5913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3489-7672
0000-0003-3949-6026
PQID 2737457548
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2721637290
proquest_journals_2737457548
crossref_primary_10_1002_anie_202213276
crossref_citationtrail_10_1002_anie_202213276
wiley_primary_10_1002_anie_202213276_ANIE202213276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 25, 2022
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: November 25, 2022
  day: 25
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2015; 15
2017; 7
2017; 8
2013; 3
2021; 4
2019; 31
2020; 142
2019; 2
2019; 13
2019; 57
2019; 15
2020 2020; 59 132
2016; 52
2020; 14
2020; 12
2020; 463
2020; 11
2020; 32
2017; 9
2017; 139
2016; 4
2018; 6
2022 2022; 61 134
2016; 7
2017; 17
2022; 6
2022; 7
2018 2018; 57 130
2017; 11
2021 2021; 60 133
2022; 13
2015 2015; 54 127
2016; 353
2022; 14
2022; 31
2020; 399
2018; 12
2018; 10
2018; 54
2010; 4
2022; 16
2022; 38
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Feng J. F. (e_1_2_7_32_1) 2020; 12
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_37_2
e_1_2_7_39_1
(e_1_2_7_43_2) 2022; 134
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
(e_1_2_7_3_2) 2022; 134
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 142
  start-page: 12478
  year: 2020
  end-page: 12485
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 7691 7817
  year: 2018 2018
  end-page: 7696 7822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 8017
  year: 2018
  end-page: 8028
  publication-title: ACS Nano
– volume: 54 127
  start-page: 574 584
  year: 2015 2015
  end-page: 577 587
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 389
  year: 2022
  end-page: 404
  publication-title: Nat. Chem. Rev.
– volume: 7
  start-page: 222
  year: 2022
  end-page: 228
  publication-title: Nat. Energy
– volume: 4
  start-page: 8541
  year: 2016
  end-page: 8547
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 6792
  year: 2018
  end-page: 6795
  publication-title: Chem. Commun.
– volume: 142
  start-page: 7218
  year: 2020
  end-page: 7224
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 29854
  year: 2020
  end-page: 29860
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 55060
  year: 2017
  end-page: 55066
  publication-title: RSC Adv.
– volume: 139
  start-page: 7172
  year: 2017
  end-page: 7175
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 10098
  year: 2016
  end-page: 10104
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 38
  start-page: 1533
  year: 2022
  end-page: 1539
  publication-title: Langmuir
– volume: 16
  start-page: 13554
  year: 2022
  end-page: 13572
  publication-title: ACS nano
– volume: 59 132
  start-page: 22392 22578
  year: 2020 2020
  end-page: 22396 22582
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 62
  year: 2018
  end-page: 68
  publication-title: Energy Storage Mater.
– volume: 60 133
  start-page: 12636 12744
  year: 2021 2021
  end-page: 12647 12755
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 12743
  year: 2020
  end-page: 12750
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 7012
  year: 2021
  end-page: 7019
  publication-title: ACS Appl. Energy Mater.
– volume: 17
  start-page: 6893
  year: 2017
  end-page: 6899
  publication-title: Nano Lett.
– volume: 10
  start-page: 17933
  year: 2018
  end-page: 17941
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3947
  year: 2020
  publication-title: Nat. Commun.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 7005
  year: 2010
  end-page: 7013
  publication-title: ACS Nano
– volume: 32
  start-page: 3480
  year: 2020
  end-page: 3488
  publication-title: Chem. Mater.
– volume: 57 130
  start-page: 12650 12832
  year: 2018 2018
  end-page: 12655 12837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 463
  year: 2020
  publication-title: J. Power Sources
– volume: 8
  start-page: 3155
  year: 2021
  end-page: 3160
  publication-title: ChemElectroChem
– volume: 14
  start-page: 8955
  year: 2022
  end-page: 8962
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 24698
  year: 2017
  end-page: 24708
  publication-title: RSC Adv.
– volume: 9
  start-page: 9365
  year: 2017
  end-page: 9375
  publication-title: Nanoscale
– volume: 7
  start-page: 12122
  year: 2016
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2459
  year: 2017
  end-page: 2469
  publication-title: ACS Nano
– volume: 31
  year: 2022
  publication-title: FlatChem
– volume: 13
  start-page: 3600
  year: 2019
  end-page: 3607
  publication-title: ACS Nano
– volume: 353
  start-page: 1137
  year: 2016
  end-page: 1140
  publication-title: Science
– volume: 8
  start-page: 527
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1176
  year: 2020
  end-page: 1184
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 20508
  year: 2017
  end-page: 20518
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 9019
  year: 2018
  end-page: 9031
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 6051
  year: 2016
  end-page: 6060
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 2788
  year: 2020
  end-page: 2797
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1630
  year: 2013
  end-page: 1635
  publication-title: Adv. Eng. Mater.
– volume: 15
  start-page: 5982
  year: 2015
  end-page: 5987
  publication-title: Nano Lett.
– volume: 52
  start-page: 7249
  year: 2016
  end-page: 7252
  publication-title: Chem. Commun.
– volume: 13
  start-page: 2878
  year: 2022
  publication-title: Nat. Commun.
– volume: 57
  start-page: 692
  year: 2019
  end-page: 702
  publication-title: Nano Energy
– volume: 2
  start-page: 6087
  year: 2019
  end-page: 6091
  publication-title: ACS Appl. Nano Mater.
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201902399
– ident: e_1_2_7_47_1
  doi: 10.1016/j.flatc.2021.100330
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.0c02406
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202009871
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201805472
– ident: e_1_2_7_48_1
  doi: 10.1039/C7RA09349G
– volume: 12
  start-page: 29854
  year: 2020
  ident: e_1_2_7_32_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_55_1
  doi: 10.1021/acsanm.9b01194
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-022-30663-3
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cej.2020.125873
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201300627
– ident: e_1_2_7_51_1
  doi: 10.1016/j.nanoen.2018.12.084
– ident: e_1_2_7_7_1
  doi: 10.1021/acsami.7b02943
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.202113576
– ident: e_1_2_7_52_1
  doi: 10.1002/aenm.201601885
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.9b09802
– volume: 134
  start-page: e202113576
  year: 2022
  ident: e_1_2_7_43_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113576
– ident: e_1_2_7_9_1
  doi: 10.1021/acsami.8b03212
– ident: e_1_2_7_20_2
  doi: 10.1002/ange.202009871
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201901351
– ident: e_1_2_7_15_1
  doi: 10.1038/s41467-017-00649-7
– ident: e_1_2_7_34_1
  doi: 10.1021/acsnano.8b02849
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201800354
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.5b11973
– ident: e_1_2_7_33_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202117511
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.0c04885
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201905361
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.9b09541
– ident: e_1_2_7_19_1
  doi: 10.1002/celc.202100458
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-020-17757-6
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.6b07668
– ident: e_1_2_7_8_1
  doi: 10.1021/acsnano.2c06220
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.0c05277
– volume: 134
  start-page: e202117511
  year: 2022
  ident: e_1_2_7_3_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202117511
– ident: e_1_2_7_37_2
  doi: 10.1002/ange.201800354
– ident: e_1_2_7_13_1
  doi: 10.1039/C6TA00706F
– ident: e_1_2_7_53_1
  doi: 10.1039/C6TA02796B
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.langmuir.1c02915
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.202006926
– ident: e_1_2_7_14_1
  doi: 10.1002/ente.202000857
– ident: e_1_2_7_50_1
  doi: 10.1038/ncomms12122
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201410077
– ident: e_1_2_7_18_1
  doi: 10.1039/C8CC02616E
– ident: e_1_2_7_57_1
  doi: 10.1021/acsami.1c21026
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ensm.2017.08.010
– ident: e_1_2_7_17_1
  doi: 10.1039/C8TA01470A
– ident: e_1_2_7_27_1
  doi: 10.1039/C6CC02964G
– ident: e_1_2_7_45_1
  doi: 10.1039/C7NR02311A
– ident: e_1_2_7_24_2
  doi: 10.1002/ange.201805472
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.7b03204
– ident: e_1_2_7_25_2
  doi: 10.1002/ange.201410077
– ident: e_1_2_7_1_1
  doi: 10.1038/s41570-022-00384-8
– ident: e_1_2_7_46_1
  doi: 10.1021/acsaem.1c01068
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.nanolett.7b03290
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202000287
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.nanolett.5b02116
– ident: e_1_2_7_54_1
  doi: 10.1021/nn102227u
– ident: e_1_2_7_2_1
  doi: 10.1038/s41560-022-00993-z
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jpowsour.2020.228212
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.chemmater.0c00359
– ident: e_1_2_7_42_1
  doi: 10.1039/C7RA03402D
– ident: e_1_2_7_40_2
  doi: 10.1002/ange.202006926
– ident: e_1_2_7_49_1
  doi: 10.1021/acsnano.9b00165
SSID ssj0028806
Score 2.5889714
Snippet The rechargeable lithium/sodium‐iodine battery (Li/Na‐I2) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded...
The rechargeable lithium/sodium‐iodine battery (Li/Na‐I 2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen‐bonded...
The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202213276
SubjectTerms Adsorptivity
Cycles
Encapsulation
Energy demand
Energy storage
Hydrogen
Hydrogen bonding
Hydrogen-Bonded Organic Framework
Iodides
Iodine
Lithium
Lithium/Sodium-Iodine Organic Batteries
Metal ions
Monomers
Nucleation
Reaction kinetics
Reaction mechanisms
Rechargeable batteries
Redox Reaction
Redox reactions
Sodium
Ti3C2Tx MXene
Title Hydrogen‐Bonded Organic Framework for High‐Performance Lithium/Sodium‐Iodine Organic Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213276
https://www.proquest.com/docview/2737457548
https://www.proquest.com/docview/2721637290
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqtVIgie1qabbJI9ilha0SJqwVvYJxY1lT4OevIn-Bv9Jc40TWoFEfSUDTubx-7s7jfJzDeEHMKO52Qj4FTwxNKQGU6V4j6VzjYUppIWCgOcLztRqxue3_G7L1H8OT9E-cENZ8ZkvcYJLtWwPiMNxQhssO8YA3sqRs5tdNhCVHRd8kcxUM48vCgIKGahL1gbfVafbz6_K82g5lfAOtlxmitEFs-aO5o8HI9H6li_fqNx_M_LrJLlKRz1TnL9WSMLNlsni6dFFrgNYlovZtAHLft4e8cUxNZ4efim9pqFX5cHwNdDhxGQuZoFIngXvdF9b_xUv-kbOEBlGwqZLS-Qc3uCqb5Jus2z29MWnWZmoBoAXERjo4XzfcNdQ0dJxJ3yI8c5lJ1QSmrmjHVgCSWJM0aEsZaRjHUgAsOl5KIRbJFK1s_sNvG4McwKjIHgQajCWCktpEsiBYuwBvOuSmgxMqme0pZj9ozHNCdcZin2XVr2XZUclfLPOWHHj5K1YqDT6cQdpoDm4hAgbJhUyUFZDX2O_1FkZvtjlGGAYsEq8auETUb1lzulJ532WXm285dGu2QJyxgFyXiNVEaDsd0DODRS-xOV_wR84AVN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXoPyILYUGCcTJ3awTJ_GBQ9V2tUu3KwSt1Fvwr1jRZqvurqr21Efoq_AqPAJPwszmZykSQkLqgVOc2HES2-P5xvF8A_AaNZ5XnUgwKTLHYm4F01qETHnX0RRKWmpycN4fJr3D-P2ROFqCb7UvTMkP0Sy4kWTM52sScFqQbi9YQ8kFGw08ztGgSpNqX-WeuzhHq23yrr-DXfyG8-7uwXaPVYEFmEH8kbDUGunD0ArfMUmWCK_DxAuBaS-1VoZ76zwC-Szz1so4NSpRqYlkZIVSQnYirPcO3KUw4kTXv_OxYaziKA6lQ1MUMYp7X_NEhrx9831v6sEFuP0VIs91XPcBfK9bp9za8nVzNtWb5vI34sj_qvkewv0KcQdbpYiswpIrHsHKdh3o7jHY3oU9G6Mg_bi6pijLzgalh6oJuvXWtQCxfUB7YrDMh4WvRTAYTb-MZiftT2OLB8zsY6JwTQUlfenITZ7A4a185FNYLsaFewaBsJY7SW4eIop1nGptpPJZolHPGLRgW8DqoZCbipmdAoQc5yWnNM-pr_Kmr1rwtil_WnKS_LHkej2y8mpumuQIWNMYUXqcteBVk41tTr-KVOHGMyrDEaij4RW2gM-H0V-elG8N-7vN2dq_3LQBK72D_UE-6A_3nsM9uk5On1ysw_L0bOZeIPqb6pdzeQvg822P0J_sp2XM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RaJcgAIVgbYYCcRpG2ftXXsPHKqmUdKWqKKt1JvZXzVqcaImESqnPkIfhVfhFfoknY1_QpEQElIPnLy2x2t7d2b3G3vnG4B3OOM52YoYESy1JKaGEaVYSKSzLeVTSQvlA5w_9Xn3ON49YScL8KOKhSn4IeoPbt4yZuO1N_CRcc05aaiPwEb_jlL0pxJeLqvcs5ff0Gkbf-y1sYffU9rZOdrukjKvANEIPzhJjBYuDA1zLc1TzpwKuWMMy04oJTV1xjrE8WnqjBFxoiWXiY5EZJiUTLQirHcRHsQ8FD5ZRPtzTVhF0RqKeKYoIj7tfUUTGdLm3ee9Ow3Ose2vCHk2xXWewM-qcYqVLWeb04na1N9_4438n1rvKTwu8XawVRjICizY_Bksb1dp7p6D6V6aiyGa0c3Vtc-xbE1QxKfqoFMtXAsQ2Qd-RQzKHMwjLYL9weR0MP3aPBwa3ODJHhZyW1dQkJcO7PgFHN_LS67CUj7M7UsImDHUCh_kwaJYxYlSWkiXcoWzjEb_tQGk0oRMl7zsPj3IeVYwStPM91VW91UDPtTyo4KR5I-Sa5ViZeXINM4QriYxYvQ4bcDb-jS2uf9RJHM7nHoZijAd3a6wAXSmRX-5U7bV7-3Ue6_-5aI38PCg3cn2e_291_DIH_YRn5StwdLkYmrXEfpN1MbM2gL4ct8KegtG0mR7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-Bonded+Organic+Framework+for+High-Performance+Lithium%2FSodium-Iodine+Organic+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Chaofei&rft.au=Han%2C+Bo&rft.au=Sun%2C+Weiwei&rft.au=Cao%2C+Yingnan&rft.date=2022-11-25&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=48&rft.spage=e202213276&rft_id=info:doi/10.1002%2Fanie.202213276&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon