Noncovalent Polymerization‐Activated Ultrastrong Near‐Infrared Room‐Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution
Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 38; pp. e2203534 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials.
A highly efficient noncovalent polymerization‐activated phosphorescence‐harvesting system is successfully constructed in aqueous solution based on the stepwise confinement of cucurbit[7]uril and β‐cyclodextrin‐grafted hyaluronic acid, which shows high phosphorescence energy transfer efficiency accompanied by a long‐lived near‐infrared (NIR) emitting performance, and is ultimately applied for NIR targeted imaging of cancer cells. |
---|---|
AbstractList | Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. A highly efficient noncovalent polymerization‐activated phosphorescence‐harvesting system is successfully constructed in aqueous solution based on the stepwise confinement of cucurbit[7]uril and β‐cyclodextrin‐grafted hyaluronic acid, which shows high phosphorescence energy transfer efficiency accompanied by a long‐lived near‐infrared (NIR) emitting performance, and is ultimately applied for NIR targeted imaging of cancer cells. Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials. |
Author | Dong, Xiaoyun Dai, Xian‐Yin Liu, Yu Hu, Yu‐Yang Huo, Man |
Author_xml | – sequence: 1 givenname: Xian‐Yin surname: Dai fullname: Dai, Xian‐Yin organization: Nankai University – sequence: 2 givenname: Man surname: Huo fullname: Huo, Man organization: Nankai University – sequence: 3 givenname: Xiaoyun surname: Dong fullname: Dong, Xiaoyun organization: Nankai University – sequence: 4 givenname: Yu‐Yang surname: Hu fullname: Hu, Yu‐Yang organization: Nankai University – sequence: 5 givenname: Yu orcidid: 0000-0001-8723-1896 surname: Liu fullname: Liu, Yu email: yuliu@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkU1rFTEYhYNU8La6dR1w42au-ZyP5VBbLdRa9HY9ZHLftFMyyTXJVMZVf0LxJ_pLzHhFoSAuQgjvc_IezjlEB847QOglJWtKCHujtqNaM8IY4ZKLJ2hFJaOFII08QCvScFk0paifocMYbwkhTUnKFfp-4Z32d8qCS_jS23mEMHxTafDux_1Dq9NwpxJs8ZVNQcUUvLvGF6BCHp45E1TIs0_ej_m9gXEHQaUpAL688XF34wNEDU4DPnEQrme8CcpFAwG3McLY2xkPDrdfJvBTxJ-9nZa9z9FTo2yEF7_vI3R1erI5fl-cf3x3dtyeF1rQUhSGKFaDYD1jhrCScSMFMGMqVVea15wIUyttmr7n-RBOJO8JVbWuMrbNIR2h1_t_d8FnCzF145DtWqvc4qdjZc2qmtNyQV89Qm_9FFx217GKVlRKIatMiT2lg48xgOn0kH5FmbMbbEdJtxTVLUV1f4rKsvUj2S4MowrzvwXNXvB1sDD_h-7atx_av9qfEzmucA |
CitedBy_id | crossref_primary_10_1039_D3CC00748K crossref_primary_10_1002_ange_202409162 crossref_primary_10_1016_j_nantod_2024_102200 crossref_primary_10_1002_adom_202302928 crossref_primary_10_1038_s41467_024_49238_5 crossref_primary_10_1002_adma_202300526 crossref_primary_10_1002_cptc_202300018 crossref_primary_10_1039_D4SC07689C crossref_primary_10_1002_cjoc_202200672 crossref_primary_10_1002_sstr_202200327 crossref_primary_10_1016_j_gce_2024_03_004 crossref_primary_10_1007_s12209_023_00375_w crossref_primary_10_1002_adma_202211858 crossref_primary_10_1002_ange_202403773 crossref_primary_10_1002_anie_202408516 crossref_primary_10_1016_j_trac_2023_117339 crossref_primary_10_1002_adma_202311347 crossref_primary_10_1021_acs_jpcc_2c07138 crossref_primary_10_1002_ange_202421729 crossref_primary_10_1038_s41570_023_00555_1 crossref_primary_10_1039_D3QO00584D crossref_primary_10_1021_acsmaterialslett_2c01033 crossref_primary_10_1002_anie_202416079 crossref_primary_10_1021_acs_accounts_2c00462 crossref_primary_10_1002_ange_202302751 crossref_primary_10_1002_anie_202409162 crossref_primary_10_1039_D3IM00004D crossref_primary_10_1002_cptc_202300140 crossref_primary_10_1039_D4CC00616J crossref_primary_10_1016_j_carbpol_2023_120872 crossref_primary_10_1039_D4SC00160E crossref_primary_10_1021_jacs_3c00711 crossref_primary_10_1002_adfm_202401728 crossref_primary_10_1002_smll_202311823 crossref_primary_10_1039_D3CC03487A crossref_primary_10_1002_chem_202303611 crossref_primary_10_1002_anie_202403773 crossref_primary_10_1016_j_dyepig_2023_111289 crossref_primary_10_1021_acsapm_4c00571 crossref_primary_10_1002_adom_202301550 crossref_primary_10_1002_ange_202408516 crossref_primary_10_1039_D4CE00812J crossref_primary_10_1021_acssuschemeng_3c07507 crossref_primary_10_1002_anie_202302751 crossref_primary_10_1002_adom_202401642 crossref_primary_10_1038_s41467_023_36105_y crossref_primary_10_1002_cphc_202200716 crossref_primary_10_1021_acs_chemrev_3c00401 crossref_primary_10_1002_adfm_202300779 crossref_primary_10_1002_adom_202202588 crossref_primary_10_1002_adfm_202316008 crossref_primary_10_1039_D4SC05698A crossref_primary_10_3390_molecules28010063 crossref_primary_10_1038_s42004_024_01175_6 crossref_primary_10_1016_j_cej_2024_156584 crossref_primary_10_1002_advs_202307777 crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1039_D2CS00993E crossref_primary_10_1021_acs_inorgchem_3c03480 crossref_primary_10_1002_advs_202414439 crossref_primary_10_1016_j_optmat_2024_115610 crossref_primary_10_1002_adma_202311922 crossref_primary_10_1002_adma_202307971 crossref_primary_10_1002_macp_202400406 crossref_primary_10_1016_j_ccr_2024_215717 crossref_primary_10_1007_s11426_022_1474_0 crossref_primary_10_1016_j_dyepig_2024_112080 crossref_primary_10_1039_D4QM01025F crossref_primary_10_1002_adom_202402201 crossref_primary_10_1039_D3TC03553K crossref_primary_10_1039_D3TA03498D crossref_primary_10_1016_j_jcis_2025_02_043 crossref_primary_10_1002_advs_202405327 crossref_primary_10_1016_j_cej_2023_143931 crossref_primary_10_1039_D2CC06908C crossref_primary_10_1002_adma_202401493 crossref_primary_10_1016_j_dyepig_2024_111962 crossref_primary_10_1039_D3TC03686C crossref_primary_10_1016_j_cej_2024_153026 crossref_primary_10_1002_adom_202300284 crossref_primary_10_1021_jacsau_3c00642 crossref_primary_10_1002_adom_202400453 crossref_primary_10_1002_adfm_202408023 crossref_primary_10_1016_j_cogsc_2023_100823 crossref_primary_10_1002_anie_202421729 crossref_primary_10_1021_acsami_3c12242 crossref_primary_10_1039_D3SC04001A crossref_primary_10_1039_D4CC03693J crossref_primary_10_1002_adma_202304032 crossref_primary_10_1002_ange_202416079 |
Cites_doi | 10.1021/acs.chemmater.9b00439 10.1021/jo200349u 10.1002/anie.202115748 10.1002/advs.202001909 10.1021/acs.accounts.8b00620 10.1038/s41467-022-28011-6 10.1002/adma.201701905 10.1021/acs.jpclett.8b03668 10.1002/anie.201904407 10.1002/adom.202102666 10.1021/jacs.6b07590 10.1021/cr5007057 10.1002/anie.202113577 10.1002/anie.201907678 10.1021/jacs.9b08065 10.1038/s41467-021-27914-0 10.1002/adfm.201802657 10.1021/acsami.0c04917 10.1002/adma.202108333 10.1002/adom.202102701 10.1002/anie.202115265 10.1021/acs.biomac.0c01181 10.1021/jo301807y 10.1002/cphc.201500901 10.1002/adma.201903962 10.1002/smll.202104073 10.1021/ol035967x 10.1021/jacs.9b12699 10.1039/D0TC05243D 10.1002/adma.201601719 10.1002/anie.201807373 10.1039/C6SC03515A 10.1038/ncomms12042 10.1039/D1CC06011B 10.1021/acsnano.9b01087 10.1002/ange.202200466 10.1002/smll.202002494 10.1038/s41467-021-25299-8 10.1016/j.dyepig.2017.09.036 10.1002/advs.202200524 10.1002/anie.202003427 10.1002/smll.202104514 10.1021/jo0624288 10.1002/anie.202002555 10.1021/jacs.0c12853 10.1002/anie.201800175 10.1021/acsmaterialslett.1c00062 10.1021/acs.iecr.9b06314 10.1039/D1SC05861D 10.1002/anie.202106035 10.1021/acs.chemrev.1c01050 10.1021/acs.accounts.2c00038 10.1021/acsami.2c02851 10.1039/D1SC00097G 10.1021/acsnano.1c05234 10.1021/jacs.8b05840 10.1002/adma.202006752 10.1039/D0CS01463J 10.1002/advs.202103041 10.1016/j.cclet.2013.06.030 10.1002/agt2.3 10.1039/C9CC01601E 10.1002/adom.202000265 10.1039/D2TA00277A 10.1002/anie.201912654 10.1039/D1SC00446H 10.1021/ja075981v 10.1021/acs.accounts.1c00336 10.1002/adfm.201807599 10.1002/anie.202107295 10.1021/acs.chemmater.1c03688 10.1002/anie.201915433 10.1021/jacs.2c02076 10.1038/s41467-020-18520-7 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202203534 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202203534 ADMA202203534 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22131008; 22101143 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4164-f0a28e42b22f02623f54e2ff7a87c38304f8acf9bb39bb03053b01a8c74e2d203 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:55:37 EDT 2025 Mon Jul 14 10:50:27 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 02:33:19 EDT 2025 Wed Jan 22 16:23:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4164-f0a28e42b22f02623f54e2ff7a87c38304f8acf9bb39bb03053b01a8c74e2d203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8723-1896 |
PQID | 2717155457 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2682783160 proquest_journals_2717155457 crossref_citationtrail_10_1002_adma_202203534 crossref_primary_10_1002_adma_202203534 wiley_primary_10_1002_adma_202203534_ADMA202203534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015 2020 2021; 115 7 57 2022 2022 2019 2022 2022; 34 61 29 34 13 2018 2020 2016 2022; 57 1 28 18 2016 2018 2022; 17 148 9 2008 2016; 130 138 2017 2019 2020; 8 10 59 2019 2020; 55 142 2004 2012 2011 2007 2013; 6 77 76 72 24 2020 2021 2018 2022; 16 9 140 10 2021 2020 2019 2022 2022; 54 59 52 18 144 2021 2021 2021 2018 2022; 12 50 3 28 55 2019 2020 2019 2020; 13 21 31 11 2017 2018 2019 2022; 29 57 31 2019 2019 2021 2022; 141 59 143 134 2020 2022 2022 2022 2022; 59 9 13 10 61 2021; 60 2021 2021 2022 2020; 60 15 10 32 2020 2020 2022 2022; 59 12 122 14 2020 2021 2022; 8 12 13 2019 2021 2021 2016 2019; 59 12 60 7 58 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_11_5 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_9_4 e_1_2_7_9_3 Chen X.‐M. (e_1_2_7_6_4) 2022 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_16_4 e_1_2_7_18_2 e_1_2_7_14_5 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_14_4 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_10_5 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_8_5 e_1_2_7_8_4 e_1_2_7_20_4 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 Yu Z. (e_1_2_7_3_4) 2022; 134 |
References_xml | – volume: 34 61 29 34 13 start-page: 1627 573 year: 2022 2022 2019 2022 2022 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Chem. Mater. Chem. Sci. – volume: 54 59 52 18 144 start-page: 3403 738 6107 year: 2021 2020 2019 2022 2022 publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Acc. Chem. Res. Small J. Am. Chem. Soc. – volume: 16 9 140 10 start-page: 1958 8528 year: 2020 2021 2018 2022 publication-title: Small J. Mater. Chem. C J. Am. Chem. Soc. J. Mater. Chem. A – volume: 6 77 76 72 24 start-page: 185 4682 3640 949 year: 2004 2012 2011 2007 2013 publication-title: Org. Lett. J. Org. Chem. J. Org. Chem. J. Org. Chem. Chin. Chem. Lett. – volume: 8 12 13 start-page: 4993 186 year: 2020 2021 2022 publication-title: Adv. Opt. Mater. Nat. Commun. Nat. Commun. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 29 57 31 start-page: 3163 year: 2017 2018 2019 2022 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. ChemPhotoChem – volume: 141 59 143 134 start-page: 9908 2908 year: 2019 2019 2021 2022 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 59 12 60 7 58 start-page: 5319 8862 year: 2019 2021 2021 2016 2019 publication-title: Angew. Chem., Int. Ed. Chem. Sci. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed. – volume: 60 15 10 32 year: 2021 2021 2022 2020 publication-title: Angew. Chem., Int. Ed. ACS Nano Adv. Opt. Mater. Adv. Mater. – volume: 55 142 start-page: 4343 6837 year: 2019 2020 publication-title: Chem. Commun. J. Am. Chem. Soc. – volume: 17 148 9 start-page: 1934 306 year: 2016 2018 2022 publication-title: ChemPhysChem Dyes Pig. Adv. Sci. – volume: 115 7 57 start-page: 7502 year: 2015 2020 2021 publication-title: Chem. Rev. Adv. Sci. Chem. Commun. – volume: 8 10 59 start-page: 590 310 9393 year: 2017 2019 2020 publication-title: Chem. Sci. J. Phys. Chem. Lett. Angew. Chem., Int. Ed. – volume: 130 138 start-page: 600 year: 2008 2016 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 59 9 13 10 61 start-page: 1578 347 year: 2020 2022 2022 2022 2022 publication-title: Ind. Eng. Chem. Res. Adv. Sci. Nat. Commun. Adv. Opt. Mater. Angew. Chem., Int. Ed. – volume: 59 12 122 14 start-page: 9032 year: 2020 2020 2022 2022 publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Chem. Rev. ACS Appl. Mater. Interfaces – volume: 12 50 3 28 55 start-page: 4216 5564 379 1160 year: 2021 2021 2021 2018 2022 publication-title: Chem. Sci. Chem. Soc. Rev. ACS Mater. Lett. Adv. Funct. Mater. Acc. Chem. Res. – volume: 13 21 31 11 start-page: 4742 4998 3349 4655 year: 2019 2020 2019 2020 publication-title: ACS Nano Biomacromolecules Chem. Mater. Nat. Commun. – volume: 57 1 28 18 start-page: 31 7666 year: 2018 2020 2016 2022 publication-title: Angew. Chem., Int. Ed. Aggregate Adv. Mater. Small – ident: e_1_2_7_20_3 doi: 10.1021/acs.chemmater.9b00439 – ident: e_1_2_7_14_3 doi: 10.1021/jo200349u – ident: e_1_2_7_11_5 doi: 10.1002/anie.202115748 – ident: e_1_2_7_5_2 doi: 10.1002/advs.202001909 – ident: e_1_2_7_12_3 doi: 10.1021/acs.accounts.8b00620 – ident: e_1_2_7_11_3 doi: 10.1038/s41467-022-28011-6 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201701905 – ident: e_1_2_7_18_2 doi: 10.1021/acs.jpclett.8b03668 – ident: e_1_2_7_4_5 doi: 10.1002/anie.201904407 – ident: e_1_2_7_9_3 doi: 10.1002/adom.202102666 – ident: e_1_2_7_19_2 doi: 10.1021/jacs.6b07590 – ident: e_1_2_7_5_1 doi: 10.1021/cr5007057 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202113577 – ident: e_1_2_7_3_2 doi: 10.1002/anie.201907678 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.9b08065 – ident: e_1_2_7_7_3 doi: 10.1038/s41467-021-27914-0 – ident: e_1_2_7_8_4 doi: 10.1002/adfm.201802657 – ident: e_1_2_7_1_2 doi: 10.1021/acsami.0c04917 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202108333 – ident: e_1_2_7_11_4 doi: 10.1002/adom.202102701 – ident: e_1_2_7_10_2 doi: 10.1002/anie.202115265 – ident: e_1_2_7_20_2 doi: 10.1021/acs.biomac.0c01181 – ident: e_1_2_7_14_2 doi: 10.1021/jo301807y – ident: e_1_2_7_15_1 doi: 10.1002/cphc.201500901 – ident: e_1_2_7_6_3 doi: 10.1002/adma.201903962 – ident: e_1_2_7_12_4 doi: 10.1002/smll.202104073 – ident: e_1_2_7_14_1 doi: 10.1021/ol035967x – ident: e_1_2_7_17_2 doi: 10.1021/jacs.9b12699 – ident: e_1_2_7_2_2 doi: 10.1039/D0TC05243D – ident: e_1_2_7_16_3 doi: 10.1002/adma.201601719 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201807373 – ident: e_1_2_7_18_1 doi: 10.1039/C6SC03515A – ident: e_1_2_7_4_4 doi: 10.1038/ncomms12042 – ident: e_1_2_7_5_3 doi: 10.1039/D1CC06011B – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.9b01087 – volume: 134 start-page: e202200466 year: 2022 ident: e_1_2_7_3_4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202200466 – ident: e_1_2_7_2_1 doi: 10.1002/smll.202002494 – ident: e_1_2_7_7_2 doi: 10.1038/s41467-021-25299-8 – ident: e_1_2_7_15_2 doi: 10.1016/j.dyepig.2017.09.036 – ident: e_1_2_7_15_3 doi: 10.1002/advs.202200524 – ident: e_1_2_7_1_1 doi: 10.1002/anie.202003427 – ident: e_1_2_7_16_4 doi: 10.1002/smll.202104514 – ident: e_1_2_7_14_4 doi: 10.1021/jo0624288 – ident: e_1_2_7_18_3 doi: 10.1002/anie.202002555 – ident: e_1_2_7_3_3 doi: 10.1021/jacs.0c12853 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201800175 – ident: e_1_2_7_8_3 doi: 10.1021/acsmaterialslett.1c00062 – ident: e_1_2_7_11_1 doi: 10.1021/acs.iecr.9b06314 – ident: e_1_2_7_10_5 doi: 10.1039/D1SC05861D – ident: e_1_2_7_4_3 doi: 10.1002/anie.202106035 – ident: e_1_2_7_1_3 doi: 10.1021/acs.chemrev.1c01050 – ident: e_1_2_7_8_5 doi: 10.1021/acs.accounts.2c00038 – year: 2022 ident: e_1_2_7_6_4 publication-title: ChemPhotoChem – ident: e_1_2_7_1_4 doi: 10.1021/acsami.2c02851 – ident: e_1_2_7_4_2 doi: 10.1039/D1SC00097G – ident: e_1_2_7_9_2 doi: 10.1021/acsnano.1c05234 – ident: e_1_2_7_2_3 doi: 10.1021/jacs.8b05840 – ident: e_1_2_7_9_4 doi: 10.1002/adma.202006752 – ident: e_1_2_7_8_2 doi: 10.1039/D0CS01463J – ident: e_1_2_7_11_2 doi: 10.1002/advs.202103041 – ident: e_1_2_7_14_5 doi: 10.1016/j.cclet.2013.06.030 – ident: e_1_2_7_16_2 doi: 10.1002/agt2.3 – ident: e_1_2_7_17_1 doi: 10.1039/C9CC01601E – ident: e_1_2_7_7_1 doi: 10.1002/adom.202000265 – ident: e_1_2_7_2_4 doi: 10.1039/D2TA00277A – ident: e_1_2_7_4_1 doi: 10.1002/anie.201912654 – ident: e_1_2_7_8_1 doi: 10.1039/D1SC00446H – ident: e_1_2_7_19_1 doi: 10.1021/ja075981v – ident: e_1_2_7_12_1 doi: 10.1021/acs.accounts.1c00336 – ident: e_1_2_7_10_3 doi: 10.1002/adfm.201807599 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202107295 – ident: e_1_2_7_10_4 doi: 10.1021/acs.chemmater.1c03688 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201915433 – ident: e_1_2_7_12_5 doi: 10.1021/jacs.2c02076 – ident: e_1_2_7_20_4 doi: 10.1038/s41467-020-18520-7 |
SSID | ssj0009606 |
Score | 2.637865 |
Snippet | Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency... Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2203534 |
SubjectTerms | Aqueous solutions Assembly Confinement Cyclodextrins Energy transfer Hyaluronic acid long‐lived near‐infrared emission Materials science Near infrared radiation noncovalent polymerization Phosphorescence phosphorescence energy transfer Polymerization Porphyrins stepwise confinement targeted imaging |
Title | Noncovalent Polymerization‐Activated Ultrastrong Near‐Infrared Room‐Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203534 https://www.proquest.com/docview/2717155457 https://www.proquest.com/docview/2682783160 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYQJzhswIbWUZCRJu0USG3HSY8RFAESFUJU4hbZrg1oXYKS9gAnfsK0n7hfsvecJi1I0yQ4RIplW0le_Pw--z1_j5Bv0oQitjwMxpFSgRDGBEnUhzWPAWvM-9IK7y64GMrTkTi_iW6WTvHX_BDthhtqhp-vUcGVrg4XpKFq7HmDGAt5xJEQFAO2EBVdLfijEJ57sj0eBX0pkoa1MWSHL7u_tEoLqLkMWL3FOflIVPOudaDJj4PZVB-Yp1c0ju_5mA3yYQ5HaVqPn02yYvMtsr5EUviJ_B4WuSlgQIJ5opfF5BF9PPXhzT_Pv1Lj86PZMR1NpqWqcGf9lg5Bf6DyLHclBrjTK4DnUL62ANJrEmd6eVdUD3dF6emkjKUDfwiRetvpbEnRG_1TTx7pfU5TkFMxq2izh_eZjE4G10enwTyTQ2AA8InAhYolVjDNmINFH-MuEpY5F6skNrBGDoVLlHF9rTlcOAdxHfZUYmJoNgahbJPVvMjtF0KdUgByYyXRZ8vjnpacIylfYpx0itsOCZo_mZk5zTlm25hkNUEzy1DWWSvrDvnetn-oCT7-2bLbDIxsruhVxmA5jJAsijtkv60GFUW_i8pROBmTCeYz6cmwQ5gfBf95UpYeX6Rt6etbOu2QNbyvo-G6ZHVazuwuwKep3vMq8hdaCBaj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tywE48L-isICRQJyym9rOTw8cIrqrlt1Wq1Ur7S04rs0iSrJKW6Fy4hEQb8Kr8Ag8CTNO0u4iISSkPXDIwbETJ54Zz4zH_gbgeah9GRnhe5NAKU9Krb046KDPo1Ebi05opAsXDIZhbyzfnAQnG_C9OQtT4UOsFtxIMtx8TQJOC9K7a9RQNXHAQZz7IhCy3ld5YJaf0Gubvep3kcQvON_fG73ueXViAU-j_SE96yseG8kzzi36IFzYQBpubaTiSKPL5ksbK207WSbwIpEQmd9WsY6w2QT7w_degauURpzg-rvHa8QqcggcvJ8IvE4o4wYn0ue7F7_3oh5cG7fnTWSn4_ZvwY9mdKqtLR92FvNsR3_-DTjyvxq-23CztrhZUonIHdgw-V24cQ6H8R58Gxa5LlDmUAOzo2K6pDBWdT7155eviXYp4MyEjafzUs0oePCODfFPsLKf25L28LNj9ECwPDLoh1Q41ezotJidnRalQ8zShu25c5bMmQfWlIwC7h-z6ZK9z1mChCkWM9YsU96H8aUMyhZs5kVuHgCzSqEdH6mQwtIiamehEIQ7GGsbWiVMC7yGdVJdI7lTQpFpWmFQ85Rom65o24KXq_ZnFYbJH1tuN5yY1nPZLOXo8ZPVGUQteLaqxlmIQksqp8FJeRhTypZ26LeAO7b7S09p0h0kq9LDf3noKVzrjQaH6WF_ePAIrtP9avPfNmzOy4V5jNbiPHvi5JPB28vm6F-WknOM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64B-xUMBIIE5ps7bzd-AQsV11KV2tqq7UW3Acm6IuySrZFVpOPALiSXgVXoEnYez8bIuEkJB64JCDYydOPDOeGY_9DcBzX7o8UMx1Mk8Ih3MpndCL0OeRqI1Z5CtuwwWHY39_yt-ceCcb8L09C1PjQ3QLbkYy7HxtBHye6d01aKjILG4QpS7zGG-2VR6o1Sd02qpXowFS-AWlw73j1_tOk1fAkWh-cEe7goaK05RSjS4IZdrjimodiDCQ6LG5XIdC6ihNGV5GIljq9kUoA2yWYX_43itwlftuZJJFDI7WgFXGH7DofsxzIp-HLUykS3cvfu9FNbi2bc9byFbFDW_Cj3Zw6p0tZzvLRbojP_-GG_k_jd4tuNHY2ySuBeQ2bKj8DmydQ2G8C9_GRS4LlDjUv2RSzFYmiFWfTv355WssbQI4lZHpbFGKyoQO3pMx_glWjnJdmh385Aj9DywfK_RCapRqMjktqvlpUVq8LKnInj1lSaxxoFVJTLj9YzpbkQ85iZEuxbIi7SLlPZheyqDch828yNUDIFoItOID4ZugNAv6qc-YQR0Mpfa1YKoHTss5iWxw3E06kVlSI1DTxNA26Wjbg5dd-3mNYPLHltstIybNTFYlFP19Y3N6QQ-eddU4B5nAksjN4CTUD03Clr7v9oBarvtLT0k8OIy70sN_eegpXJsMhsnb0fjgEVw3t-udf9uwuSiX6jGaiov0iZVOAu8um6F_AbYCcjs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncovalent+Polymerization%E2%80%90Activated+Ultrastrong+Near%E2%80%90Infrared+Room%E2%80%90Temperature+Phosphorescence+Energy+Transfer+Assembly+in+Aqueous+Solution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dai%2C+Xian%E2%80%90Yin&rft.au=Huo%2C+Man&rft.au=Dong%2C+Xiaoyun&rft.au=Hu%2C+Yu%E2%80%90Yang&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=38&rft_id=info:doi/10.1002%2Fadma.202203534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202203534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |