Noncovalent Polymerization‐Activated Ultrastrong Near‐Infrared Room‐Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution

Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 38; pp. e2203534 - n/a
Main Authors Dai, Xian‐Yin, Huo, Man, Dong, Xiaoyun, Hu, Yu‐Yang, Liu, Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. A highly efficient noncovalent polymerization‐activated phosphorescence‐harvesting system is successfully constructed in aqueous solution based on the stepwise confinement of cucurbit[7]uril and β‐cyclodextrin‐grafted hyaluronic acid, which shows high phosphorescence energy transfer efficiency accompanied by a long‐lived near‐infrared (NIR) emitting performance, and is ultimately applied for NIR targeted imaging of cancer cells.
AbstractList Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials.
Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. A highly efficient noncovalent polymerization‐activated phosphorescence‐harvesting system is successfully constructed in aqueous solution based on the stepwise confinement of cucurbit[7]uril and β‐cyclodextrin‐grafted hyaluronic acid, which shows high phosphorescence energy transfer efficiency accompanied by a long‐lived near‐infrared (NIR) emitting performance, and is ultimately applied for NIR targeted imaging of cancer cells.
Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials.
Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.
Author Dong, Xiaoyun
Dai, Xian‐Yin
Liu, Yu
Hu, Yu‐Yang
Huo, Man
Author_xml – sequence: 1
  givenname: Xian‐Yin
  surname: Dai
  fullname: Dai, Xian‐Yin
  organization: Nankai University
– sequence: 2
  givenname: Man
  surname: Huo
  fullname: Huo, Man
  organization: Nankai University
– sequence: 3
  givenname: Xiaoyun
  surname: Dong
  fullname: Dong, Xiaoyun
  organization: Nankai University
– sequence: 4
  givenname: Yu‐Yang
  surname: Hu
  fullname: Hu, Yu‐Yang
  organization: Nankai University
– sequence: 5
  givenname: Yu
  orcidid: 0000-0001-8723-1896
  surname: Liu
  fullname: Liu, Yu
  email: yuliu@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkU1rFTEYhYNU8La6dR1w42au-ZyP5VBbLdRa9HY9ZHLftFMyyTXJVMZVf0LxJ_pLzHhFoSAuQgjvc_IezjlEB847QOglJWtKCHujtqNaM8IY4ZKLJ2hFJaOFII08QCvScFk0paifocMYbwkhTUnKFfp-4Z32d8qCS_jS23mEMHxTafDux_1Dq9NwpxJs8ZVNQcUUvLvGF6BCHp45E1TIs0_ej_m9gXEHQaUpAL688XF34wNEDU4DPnEQrme8CcpFAwG3McLY2xkPDrdfJvBTxJ-9nZa9z9FTo2yEF7_vI3R1erI5fl-cf3x3dtyeF1rQUhSGKFaDYD1jhrCScSMFMGMqVVea15wIUyttmr7n-RBOJO8JVbWuMrbNIR2h1_t_d8FnCzF145DtWqvc4qdjZc2qmtNyQV89Qm_9FFx217GKVlRKIatMiT2lg48xgOn0kH5FmbMbbEdJtxTVLUV1f4rKsvUj2S4MowrzvwXNXvB1sDD_h-7atx_av9qfEzmucA
CitedBy_id crossref_primary_10_1039_D3CC00748K
crossref_primary_10_1002_ange_202409162
crossref_primary_10_1016_j_nantod_2024_102200
crossref_primary_10_1002_adom_202302928
crossref_primary_10_1038_s41467_024_49238_5
crossref_primary_10_1002_adma_202300526
crossref_primary_10_1002_cptc_202300018
crossref_primary_10_1039_D4SC07689C
crossref_primary_10_1002_cjoc_202200672
crossref_primary_10_1002_sstr_202200327
crossref_primary_10_1016_j_gce_2024_03_004
crossref_primary_10_1007_s12209_023_00375_w
crossref_primary_10_1002_adma_202211858
crossref_primary_10_1002_ange_202403773
crossref_primary_10_1002_anie_202408516
crossref_primary_10_1016_j_trac_2023_117339
crossref_primary_10_1002_adma_202311347
crossref_primary_10_1021_acs_jpcc_2c07138
crossref_primary_10_1002_ange_202421729
crossref_primary_10_1038_s41570_023_00555_1
crossref_primary_10_1039_D3QO00584D
crossref_primary_10_1021_acsmaterialslett_2c01033
crossref_primary_10_1002_anie_202416079
crossref_primary_10_1021_acs_accounts_2c00462
crossref_primary_10_1002_ange_202302751
crossref_primary_10_1002_anie_202409162
crossref_primary_10_1039_D3IM00004D
crossref_primary_10_1002_cptc_202300140
crossref_primary_10_1039_D4CC00616J
crossref_primary_10_1016_j_carbpol_2023_120872
crossref_primary_10_1039_D4SC00160E
crossref_primary_10_1021_jacs_3c00711
crossref_primary_10_1002_adfm_202401728
crossref_primary_10_1002_smll_202311823
crossref_primary_10_1039_D3CC03487A
crossref_primary_10_1002_chem_202303611
crossref_primary_10_1002_anie_202403773
crossref_primary_10_1016_j_dyepig_2023_111289
crossref_primary_10_1021_acsapm_4c00571
crossref_primary_10_1002_adom_202301550
crossref_primary_10_1002_ange_202408516
crossref_primary_10_1039_D4CE00812J
crossref_primary_10_1021_acssuschemeng_3c07507
crossref_primary_10_1002_anie_202302751
crossref_primary_10_1002_adom_202401642
crossref_primary_10_1038_s41467_023_36105_y
crossref_primary_10_1002_cphc_202200716
crossref_primary_10_1021_acs_chemrev_3c00401
crossref_primary_10_1002_adfm_202300779
crossref_primary_10_1002_adom_202202588
crossref_primary_10_1002_adfm_202316008
crossref_primary_10_1039_D4SC05698A
crossref_primary_10_3390_molecules28010063
crossref_primary_10_1038_s42004_024_01175_6
crossref_primary_10_1016_j_cej_2024_156584
crossref_primary_10_1002_advs_202307777
crossref_primary_10_1007_s11426_024_1971_4
crossref_primary_10_1039_D2CS00993E
crossref_primary_10_1021_acs_inorgchem_3c03480
crossref_primary_10_1002_advs_202414439
crossref_primary_10_1016_j_optmat_2024_115610
crossref_primary_10_1002_adma_202311922
crossref_primary_10_1002_adma_202307971
crossref_primary_10_1002_macp_202400406
crossref_primary_10_1016_j_ccr_2024_215717
crossref_primary_10_1007_s11426_022_1474_0
crossref_primary_10_1016_j_dyepig_2024_112080
crossref_primary_10_1039_D4QM01025F
crossref_primary_10_1002_adom_202402201
crossref_primary_10_1039_D3TC03553K
crossref_primary_10_1039_D3TA03498D
crossref_primary_10_1016_j_jcis_2025_02_043
crossref_primary_10_1002_advs_202405327
crossref_primary_10_1016_j_cej_2023_143931
crossref_primary_10_1039_D2CC06908C
crossref_primary_10_1002_adma_202401493
crossref_primary_10_1016_j_dyepig_2024_111962
crossref_primary_10_1039_D3TC03686C
crossref_primary_10_1016_j_cej_2024_153026
crossref_primary_10_1002_adom_202300284
crossref_primary_10_1021_jacsau_3c00642
crossref_primary_10_1002_adom_202400453
crossref_primary_10_1002_adfm_202408023
crossref_primary_10_1016_j_cogsc_2023_100823
crossref_primary_10_1002_anie_202421729
crossref_primary_10_1021_acsami_3c12242
crossref_primary_10_1039_D3SC04001A
crossref_primary_10_1039_D4CC03693J
crossref_primary_10_1002_adma_202304032
crossref_primary_10_1002_ange_202416079
Cites_doi 10.1021/acs.chemmater.9b00439
10.1021/jo200349u
10.1002/anie.202115748
10.1002/advs.202001909
10.1021/acs.accounts.8b00620
10.1038/s41467-022-28011-6
10.1002/adma.201701905
10.1021/acs.jpclett.8b03668
10.1002/anie.201904407
10.1002/adom.202102666
10.1021/jacs.6b07590
10.1021/cr5007057
10.1002/anie.202113577
10.1002/anie.201907678
10.1021/jacs.9b08065
10.1038/s41467-021-27914-0
10.1002/adfm.201802657
10.1021/acsami.0c04917
10.1002/adma.202108333
10.1002/adom.202102701
10.1002/anie.202115265
10.1021/acs.biomac.0c01181
10.1021/jo301807y
10.1002/cphc.201500901
10.1002/adma.201903962
10.1002/smll.202104073
10.1021/ol035967x
10.1021/jacs.9b12699
10.1039/D0TC05243D
10.1002/adma.201601719
10.1002/anie.201807373
10.1039/C6SC03515A
10.1038/ncomms12042
10.1039/D1CC06011B
10.1021/acsnano.9b01087
10.1002/ange.202200466
10.1002/smll.202002494
10.1038/s41467-021-25299-8
10.1016/j.dyepig.2017.09.036
10.1002/advs.202200524
10.1002/anie.202003427
10.1002/smll.202104514
10.1021/jo0624288
10.1002/anie.202002555
10.1021/jacs.0c12853
10.1002/anie.201800175
10.1021/acsmaterialslett.1c00062
10.1021/acs.iecr.9b06314
10.1039/D1SC05861D
10.1002/anie.202106035
10.1021/acs.chemrev.1c01050
10.1021/acs.accounts.2c00038
10.1021/acsami.2c02851
10.1039/D1SC00097G
10.1021/acsnano.1c05234
10.1021/jacs.8b05840
10.1002/adma.202006752
10.1039/D0CS01463J
10.1002/advs.202103041
10.1016/j.cclet.2013.06.030
10.1002/agt2.3
10.1039/C9CC01601E
10.1002/adom.202000265
10.1039/D2TA00277A
10.1002/anie.201912654
10.1039/D1SC00446H
10.1021/ja075981v
10.1021/acs.accounts.1c00336
10.1002/adfm.201807599
10.1002/anie.202107295
10.1021/acs.chemmater.1c03688
10.1002/anie.201915433
10.1021/jacs.2c02076
10.1038/s41467-020-18520-7
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202203534
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202203534
ADMA202203534
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22131008; 22101143
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4164-f0a28e42b22f02623f54e2ff7a87c38304f8acf9bb39bb03053b01a8c74e2d203
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:55:37 EDT 2025
Mon Jul 14 10:50:27 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 02:33:19 EDT 2025
Wed Jan 22 16:23:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4164-f0a28e42b22f02623f54e2ff7a87c38304f8acf9bb39bb03053b01a8c74e2d203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8723-1896
PQID 2717155457
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2682783160
proquest_journals_2717155457
crossref_citationtrail_10_1002_adma_202203534
crossref_primary_10_1002_adma_202203534
wiley_primary_10_1002_adma_202203534_ADMA202203534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2020 2021; 115 7 57
2022 2022 2019 2022 2022; 34 61 29 34 13
2018 2020 2016 2022; 57 1 28 18
2016 2018 2022; 17 148 9
2008 2016; 130 138
2017 2019 2020; 8 10 59
2019 2020; 55 142
2004 2012 2011 2007 2013; 6 77 76 72 24
2020 2021 2018 2022; 16 9 140 10
2021 2020 2019 2022 2022; 54 59 52 18 144
2021 2021 2021 2018 2022; 12 50 3 28 55
2019 2020 2019 2020; 13 21 31 11
2017 2018 2019 2022; 29 57 31
2019 2019 2021 2022; 141 59 143 134
2020 2022 2022 2022 2022; 59 9 13 10 61
2021; 60
2021 2021 2022 2020; 60 15 10 32
2020 2020 2022 2022; 59 12 122 14
2020 2021 2022; 8 12 13
2019 2021 2021 2016 2019; 59 12 60 7 58
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_11_5
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_9_4
e_1_2_7_9_3
Chen X.‐M. (e_1_2_7_6_4) 2022
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_16_4
e_1_2_7_18_2
e_1_2_7_14_5
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_14_4
e_1_2_7_16_2
e_1_2_7_12_5
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_14_2
e_1_2_7_10_5
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_8_5
e_1_2_7_8_4
e_1_2_7_20_4
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
Yu Z. (e_1_2_7_3_4) 2022; 134
References_xml – volume: 34 61 29 34 13
  start-page: 1627 573
  year: 2022 2022 2019 2022 2022
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Chem. Mater. Chem. Sci.
– volume: 54 59 52 18 144
  start-page: 3403 738 6107
  year: 2021 2020 2019 2022 2022
  publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Acc. Chem. Res. Small J. Am. Chem. Soc.
– volume: 16 9 140 10
  start-page: 1958 8528
  year: 2020 2021 2018 2022
  publication-title: Small J. Mater. Chem. C J. Am. Chem. Soc. J. Mater. Chem. A
– volume: 6 77 76 72 24
  start-page: 185 4682 3640 949
  year: 2004 2012 2011 2007 2013
  publication-title: Org. Lett. J. Org. Chem. J. Org. Chem. J. Org. Chem. Chin. Chem. Lett.
– volume: 8 12 13
  start-page: 4993 186
  year: 2020 2021 2022
  publication-title: Adv. Opt. Mater. Nat. Commun. Nat. Commun.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 29 57 31
  start-page: 3163
  year: 2017 2018 2019 2022
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. ChemPhotoChem
– volume: 141 59 143 134
  start-page: 9908 2908
  year: 2019 2019 2021 2022
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 59 12 60 7 58
  start-page: 5319 8862
  year: 2019 2021 2021 2016 2019
  publication-title: Angew. Chem., Int. Ed. Chem. Sci. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed.
– volume: 60 15 10 32
  year: 2021 2021 2022 2020
  publication-title: Angew. Chem., Int. Ed. ACS Nano Adv. Opt. Mater. Adv. Mater.
– volume: 55 142
  start-page: 4343 6837
  year: 2019 2020
  publication-title: Chem. Commun. J. Am. Chem. Soc.
– volume: 17 148 9
  start-page: 1934 306
  year: 2016 2018 2022
  publication-title: ChemPhysChem Dyes Pig. Adv. Sci.
– volume: 115 7 57
  start-page: 7502
  year: 2015 2020 2021
  publication-title: Chem. Rev. Adv. Sci. Chem. Commun.
– volume: 8 10 59
  start-page: 590 310 9393
  year: 2017 2019 2020
  publication-title: Chem. Sci. J. Phys. Chem. Lett. Angew. Chem., Int. Ed.
– volume: 130 138
  start-page: 600
  year: 2008 2016
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 59 9 13 10 61
  start-page: 1578 347
  year: 2020 2022 2022 2022 2022
  publication-title: Ind. Eng. Chem. Res. Adv. Sci. Nat. Commun. Adv. Opt. Mater. Angew. Chem., Int. Ed.
– volume: 59 12 122 14
  start-page: 9032
  year: 2020 2020 2022 2022
  publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Chem. Rev. ACS Appl. Mater. Interfaces
– volume: 12 50 3 28 55
  start-page: 4216 5564 379 1160
  year: 2021 2021 2021 2018 2022
  publication-title: Chem. Sci. Chem. Soc. Rev. ACS Mater. Lett. Adv. Funct. Mater. Acc. Chem. Res.
– volume: 13 21 31 11
  start-page: 4742 4998 3349 4655
  year: 2019 2020 2019 2020
  publication-title: ACS Nano Biomacromolecules Chem. Mater. Nat. Commun.
– volume: 57 1 28 18
  start-page: 31 7666
  year: 2018 2020 2016 2022
  publication-title: Angew. Chem., Int. Ed. Aggregate Adv. Mater. Small
– ident: e_1_2_7_20_3
  doi: 10.1021/acs.chemmater.9b00439
– ident: e_1_2_7_14_3
  doi: 10.1021/jo200349u
– ident: e_1_2_7_11_5
  doi: 10.1002/anie.202115748
– ident: e_1_2_7_5_2
  doi: 10.1002/advs.202001909
– ident: e_1_2_7_12_3
  doi: 10.1021/acs.accounts.8b00620
– ident: e_1_2_7_11_3
  doi: 10.1038/s41467-022-28011-6
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201701905
– ident: e_1_2_7_18_2
  doi: 10.1021/acs.jpclett.8b03668
– ident: e_1_2_7_4_5
  doi: 10.1002/anie.201904407
– ident: e_1_2_7_9_3
  doi: 10.1002/adom.202102666
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.6b07590
– ident: e_1_2_7_5_1
  doi: 10.1021/cr5007057
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202113577
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.201907678
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.9b08065
– ident: e_1_2_7_7_3
  doi: 10.1038/s41467-021-27914-0
– ident: e_1_2_7_8_4
  doi: 10.1002/adfm.201802657
– ident: e_1_2_7_1_2
  doi: 10.1021/acsami.0c04917
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202108333
– ident: e_1_2_7_11_4
  doi: 10.1002/adom.202102701
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.202115265
– ident: e_1_2_7_20_2
  doi: 10.1021/acs.biomac.0c01181
– ident: e_1_2_7_14_2
  doi: 10.1021/jo301807y
– ident: e_1_2_7_15_1
  doi: 10.1002/cphc.201500901
– ident: e_1_2_7_6_3
  doi: 10.1002/adma.201903962
– ident: e_1_2_7_12_4
  doi: 10.1002/smll.202104073
– ident: e_1_2_7_14_1
  doi: 10.1021/ol035967x
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.9b12699
– ident: e_1_2_7_2_2
  doi: 10.1039/D0TC05243D
– ident: e_1_2_7_16_3
  doi: 10.1002/adma.201601719
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201807373
– ident: e_1_2_7_18_1
  doi: 10.1039/C6SC03515A
– ident: e_1_2_7_4_4
  doi: 10.1038/ncomms12042
– ident: e_1_2_7_5_3
  doi: 10.1039/D1CC06011B
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.9b01087
– volume: 134
  start-page: e202200466
  year: 2022
  ident: e_1_2_7_3_4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202200466
– ident: e_1_2_7_2_1
  doi: 10.1002/smll.202002494
– ident: e_1_2_7_7_2
  doi: 10.1038/s41467-021-25299-8
– ident: e_1_2_7_15_2
  doi: 10.1016/j.dyepig.2017.09.036
– ident: e_1_2_7_15_3
  doi: 10.1002/advs.202200524
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.202003427
– ident: e_1_2_7_16_4
  doi: 10.1002/smll.202104514
– ident: e_1_2_7_14_4
  doi: 10.1021/jo0624288
– ident: e_1_2_7_18_3
  doi: 10.1002/anie.202002555
– ident: e_1_2_7_3_3
  doi: 10.1021/jacs.0c12853
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201800175
– ident: e_1_2_7_8_3
  doi: 10.1021/acsmaterialslett.1c00062
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.iecr.9b06314
– ident: e_1_2_7_10_5
  doi: 10.1039/D1SC05861D
– ident: e_1_2_7_4_3
  doi: 10.1002/anie.202106035
– ident: e_1_2_7_1_3
  doi: 10.1021/acs.chemrev.1c01050
– ident: e_1_2_7_8_5
  doi: 10.1021/acs.accounts.2c00038
– year: 2022
  ident: e_1_2_7_6_4
  publication-title: ChemPhotoChem
– ident: e_1_2_7_1_4
  doi: 10.1021/acsami.2c02851
– ident: e_1_2_7_4_2
  doi: 10.1039/D1SC00097G
– ident: e_1_2_7_9_2
  doi: 10.1021/acsnano.1c05234
– ident: e_1_2_7_2_3
  doi: 10.1021/jacs.8b05840
– ident: e_1_2_7_9_4
  doi: 10.1002/adma.202006752
– ident: e_1_2_7_8_2
  doi: 10.1039/D0CS01463J
– ident: e_1_2_7_11_2
  doi: 10.1002/advs.202103041
– ident: e_1_2_7_14_5
  doi: 10.1016/j.cclet.2013.06.030
– ident: e_1_2_7_16_2
  doi: 10.1002/agt2.3
– ident: e_1_2_7_17_1
  doi: 10.1039/C9CC01601E
– ident: e_1_2_7_7_1
  doi: 10.1002/adom.202000265
– ident: e_1_2_7_2_4
  doi: 10.1039/D2TA00277A
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201912654
– ident: e_1_2_7_8_1
  doi: 10.1039/D1SC00446H
– ident: e_1_2_7_19_1
  doi: 10.1021/ja075981v
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.accounts.1c00336
– ident: e_1_2_7_10_3
  doi: 10.1002/adfm.201807599
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202107295
– ident: e_1_2_7_10_4
  doi: 10.1021/acs.chemmater.1c03688
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201915433
– ident: e_1_2_7_12_5
  doi: 10.1021/jacs.2c02076
– ident: e_1_2_7_20_4
  doi: 10.1038/s41467-020-18520-7
SSID ssj0009606
Score 2.637865
Snippet Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency...
Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2203534
SubjectTerms Aqueous solutions
Assembly
Confinement
Cyclodextrins
Energy transfer
Hyaluronic acid
long‐lived near‐infrared emission
Materials science
Near infrared radiation
noncovalent polymerization
Phosphorescence
phosphorescence energy transfer
Polymerization
Porphyrins
stepwise confinement
targeted imaging
Title Noncovalent Polymerization‐Activated Ultrastrong Near‐Infrared Room‐Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203534
https://www.proquest.com/docview/2717155457
https://www.proquest.com/docview/2682783160
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYQJzhswIbWUZCRJu0USG3HSY8RFAESFUJU4hbZrg1oXYKS9gAnfsK0n7hfsvecJi1I0yQ4RIplW0le_Pw--z1_j5Bv0oQitjwMxpFSgRDGBEnUhzWPAWvM-9IK7y64GMrTkTi_iW6WTvHX_BDthhtqhp-vUcGVrg4XpKFq7HmDGAt5xJEQFAO2EBVdLfijEJ57sj0eBX0pkoa1MWSHL7u_tEoLqLkMWL3FOflIVPOudaDJj4PZVB-Yp1c0ju_5mA3yYQ5HaVqPn02yYvMtsr5EUviJ_B4WuSlgQIJ5opfF5BF9PPXhzT_Pv1Lj86PZMR1NpqWqcGf9lg5Bf6DyLHclBrjTK4DnUL62ANJrEmd6eVdUD3dF6emkjKUDfwiRetvpbEnRG_1TTx7pfU5TkFMxq2izh_eZjE4G10enwTyTQ2AA8InAhYolVjDNmINFH-MuEpY5F6skNrBGDoVLlHF9rTlcOAdxHfZUYmJoNgahbJPVvMjtF0KdUgByYyXRZ8vjnpacIylfYpx0itsOCZo_mZk5zTlm25hkNUEzy1DWWSvrDvnetn-oCT7-2bLbDIxsruhVxmA5jJAsijtkv60GFUW_i8pROBmTCeYz6cmwQ5gfBf95UpYeX6Rt6etbOu2QNbyvo-G6ZHVazuwuwKep3vMq8hdaCBaj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tywE48L-isICRQJyym9rOTw8cIrqrlt1Wq1Ur7S04rs0iSrJKW6Fy4hEQb8Kr8Ag8CTNO0u4iISSkPXDIwbETJ54Zz4zH_gbgeah9GRnhe5NAKU9Krb046KDPo1Ebi05opAsXDIZhbyzfnAQnG_C9OQtT4UOsFtxIMtx8TQJOC9K7a9RQNXHAQZz7IhCy3ld5YJaf0Gubvep3kcQvON_fG73ueXViAU-j_SE96yseG8kzzi36IFzYQBpubaTiSKPL5ksbK207WSbwIpEQmd9WsY6w2QT7w_degauURpzg-rvHa8QqcggcvJ8IvE4o4wYn0ue7F7_3oh5cG7fnTWSn4_ZvwY9mdKqtLR92FvNsR3_-DTjyvxq-23CztrhZUonIHdgw-V24cQ6H8R58Gxa5LlDmUAOzo2K6pDBWdT7155eviXYp4MyEjafzUs0oePCODfFPsLKf25L28LNj9ECwPDLoh1Q41ezotJidnRalQ8zShu25c5bMmQfWlIwC7h-z6ZK9z1mChCkWM9YsU96H8aUMyhZs5kVuHgCzSqEdH6mQwtIiamehEIQ7GGsbWiVMC7yGdVJdI7lTQpFpWmFQ85Rom65o24KXq_ZnFYbJH1tuN5yY1nPZLOXo8ZPVGUQteLaqxlmIQksqp8FJeRhTypZ26LeAO7b7S09p0h0kq9LDf3noKVzrjQaH6WF_ePAIrtP9avPfNmzOy4V5jNbiPHvi5JPB28vm6F-WknOM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64B-xUMBIIE5ps7bzd-AQsV11KV2tqq7UW3Acm6IuySrZFVpOPALiSXgVXoEnYez8bIuEkJB64JCDYydOPDOeGY_9DcBzX7o8UMx1Mk8Ih3MpndCL0OeRqI1Z5CtuwwWHY39_yt-ceCcb8L09C1PjQ3QLbkYy7HxtBHye6d01aKjILG4QpS7zGG-2VR6o1Sd02qpXowFS-AWlw73j1_tOk1fAkWh-cEe7goaK05RSjS4IZdrjimodiDCQ6LG5XIdC6ihNGV5GIljq9kUoA2yWYX_43itwlftuZJJFDI7WgFXGH7DofsxzIp-HLUykS3cvfu9FNbi2bc9byFbFDW_Cj3Zw6p0tZzvLRbojP_-GG_k_jd4tuNHY2ySuBeQ2bKj8DmydQ2G8C9_GRS4LlDjUv2RSzFYmiFWfTv355WssbQI4lZHpbFGKyoQO3pMx_glWjnJdmh385Aj9DywfK_RCapRqMjktqvlpUVq8LKnInj1lSaxxoFVJTLj9YzpbkQ85iZEuxbIi7SLlPZheyqDch828yNUDIFoItOID4ZugNAv6qc-YQR0Mpfa1YKoHTss5iWxw3E06kVlSI1DTxNA26Wjbg5dd-3mNYPLHltstIybNTFYlFP19Y3N6QQ-eddU4B5nAksjN4CTUD03Clr7v9oBarvtLT0k8OIy70sN_eegpXJsMhsnb0fjgEVw3t-udf9uwuSiX6jGaiov0iZVOAu8um6F_AbYCcjs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncovalent+Polymerization%E2%80%90Activated+Ultrastrong+Near%E2%80%90Infrared+Room%E2%80%90Temperature+Phosphorescence+Energy+Transfer+Assembly+in+Aqueous+Solution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dai%2C+Xian%E2%80%90Yin&rft.au=Huo%2C+Man&rft.au=Dong%2C+Xiaoyun&rft.au=Hu%2C+Yu%E2%80%90Yang&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=38&rft_id=info:doi/10.1002%2Fadma.202203534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202203534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon