Noncovalent Polymerization‐Activated Ultrastrong Near‐Infrared Room‐Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution

Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 38; pp. e2203534 - n/a
Main Authors Dai, Xian‐Yin, Huo, Man, Dong, Xiaoyun, Hu, Yu‐Yang, Liu, Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Noncovalent macrocycle‐confined supramolecular purely organic room‐temperature phosphorescence (RTP) is a current research hotspot. Herein, a high‐efficiency noncovalent polymerization‐activated near‐infrared (NIR)‐emissive RTP‐harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β‐cyclodextrin‐grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl‐chain‐bridged 6‐bromoisoquinoline derivative (G), the dumbbell‐shaped assembly G⊂CB[7] presents an appeared complexation‐induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the β‐cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further‐enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4‐sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long‐lived NIR‐emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP‐harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water‐soluble NIR phosphorescent materials. A highly efficient noncovalent polymerization‐activated phosphorescence‐harvesting system is successfully constructed in aqueous solution based on the stepwise confinement of cucurbit[7]uril and β‐cyclodextrin‐grafted hyaluronic acid, which shows high phosphorescence energy transfer efficiency accompanied by a long‐lived near‐infrared (NIR) emitting performance, and is ultimately applied for NIR targeted imaging of cancer cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202203534