Downlink resource allocation in multi-carrier systems: frequency-selective vs. equal power allocation

This paper revisits equal power allocation from the viewpoint of asymptotic network utility maximization (NUM) problem in multi-carrier systems. It is a well-known fact that the equal power allocation is near optimal to the sum capacity maximization problem in high SNR (signal-to-noise ratio) regime...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 7; no. 10; pp. 3738 - 3747
Main Authors LEE, Hyang-Won, CHONG, Song
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.10.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper revisits equal power allocation from the viewpoint of asymptotic network utility maximization (NUM) problem in multi-carrier systems. It is a well-known fact that the equal power allocation is near optimal to the sum capacity maximization problem in high SNR (signal-to-noise ratio) regime, i.e., optimal water-filling approximates to equal power allocation in that case. Due to this property together with its simplicity, the equal power allocation has been adopted in several researches, but its performance in other problems has not been clearly understood. We evaluate the suitability of equal power allocation in NUM problem which turns into various resource sharing policies according to utility functions. Namely, our conclusion is that in frequency selective channels, the equal power allocation is near optimal for efficiency-oriented resource sharing policy, but when fairness is emphasized, its performance is severely degraded and thus frequency-selective power allocation is necessary. For this, we develop a suboptimal subcarrier and frequency-selective power allocation algorithm for asymptotic NUM problem using the gradient-based scheduling theory and compare the performance of equal power allocation and the developed algorithm. Extensive simulation results are presented to verify our arguments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/T-WC.2008.061110