Deformation Behavior of Medium-strength TA18 High-pressure Tubes During NC Bending with Different Bending Radii

To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA 18 high-pressure tubes during NC bending with different bending...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of aeronautics Vol. 24; no. 5; pp. 657 - 664
Main Authors JIANG, Zhiqiang, ZHAN, Mei, YANG, He, XU, Xudong, LI, Guangjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA 18 high-pressure tubes during NC bending with different bending radii is investigated. The results show that the cross-sectional deformation and the wall thickness variation during NC bending of TA18 tubes using a small bending radius (less than 2 times of tube outside diameter) are clearly different from that using a normal bending radius (between 2 and 4 times of tube outside diameter). For bending with a normal bending radius, with or without a mandrel, the distribution of the flattening in the bending area resembles a platform and an asymmetric parabola, respectively. For bending with a small bending radius, with or without a mandrel, the flattening both distributes like a parabola, but the former has a stable peak which deflects toward the initial bending section, and the latter has a more pronounced peak with a bending angle and deflects slightly toward the bending section. The wall thickness variations with a normal bending radius, with and without a mandrel, both resemble a platform when the bending angle exceeds a certain angle. For the bending with a small radius, the distribution of the wall thickness variation without a mandrel follows an approximate parabola which increases in value as the bending angle increases. If a mandrel is used, the thickening ratio increases from the initial bending section to the bending section.
Bibliography:To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA 18 high-pressure tubes during NC bending with different bending radii is investigated. The results show that the cross-sectional deformation and the wall thickness variation during NC bending of TA18 tubes using a small bending radius (less than 2 times of tube outside diameter) are clearly different from that using a normal bending radius (between 2 and 4 times of tube outside diameter). For bending with a normal bending radius, with or without a mandrel, the distribution of the flattening in the bending area resembles a platform and an asymmetric parabola, respectively. For bending with a small bending radius, with or without a mandrel, the flattening both distributes like a parabola, but the former has a stable peak which deflects toward the initial bending section, and the latter has a more pronounced peak with a bending angle and deflects slightly toward the bending section. The wall thickness variations with a normal bending radius, with and without a mandrel, both resemble a platform when the bending angle exceeds a certain angle. For the bending with a small radius, the distribution of the wall thickness variation without a mandrel follows an approximate parabola which increases in value as the bending angle increases. If a mandrel is used, the thickening ratio increases from the initial bending section to the bending section.
titanium alloy tubes; deformation behaviors; numerical control bending; finite element method; normal bending radius; small bending radius
11-1732/V
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1000-9361
DOI:10.1016/S1000-9361(11)60077-0