Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation?
Biologists often distinguish ‘convergent’ from ‘parallel’ evolution. This distinction usually assumes that when a given phenotype evolves, the underlying genetic mechanisms are different in distantly related species (convergent) but similar in closely related species (parallel). However, several exa...
Saved in:
Published in | Trends in ecology & evolution (Amsterdam) Vol. 23; no. 1; pp. 26 - 32 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2008
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0169-5347 1872-8383 |
DOI | 10.1016/j.tree.2007.09.011 |
Cover
Summary: | Biologists often distinguish ‘convergent’ from ‘parallel’ evolution. This distinction usually assumes that when a given phenotype evolves, the underlying genetic mechanisms are different in distantly related species (convergent) but similar in closely related species (parallel). However, several examples show that the same phenotype might evolve among populations within a species by changes in different genes. Conversely, similar phenotypes might evolve in distantly related species by changes in the same gene. We thus argue that the distinction between ‘convergent’ and ‘parallel’ evolution is a false dichotomy, at best representing ends of a continuum. We can simplify our vocabulary; all instances of the independent evolution of a given phenotype can be described with a single term – convergent. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
ISSN: | 0169-5347 1872-8383 |
DOI: | 10.1016/j.tree.2007.09.011 |