Coronary CT angiography–derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia
Objectives We sought to investigate the diagnostic performance of coronary CT angiography (cCTA)–derived plaque markers combined with deep machine learning–based fractional flow reserve (CT-FFR) to identify lesion-specific ischemia using invasive FFR as the reference standard. Methods Eighty-four pa...
Saved in:
Published in | European radiology Vol. 29; no. 5; pp. 2378 - 2387 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objectives
We sought to investigate the diagnostic performance of coronary CT angiography (cCTA)–derived plaque markers combined with deep machine learning–based fractional flow reserve (CT-FFR) to identify lesion-specific ischemia using invasive FFR as the reference standard.
Methods
Eighty-four patients (61 ± 10 years, 65% male) who had undergone cCTA followed by invasive FFR were included in this single-center retrospective, IRB-approved, HIPAA-compliant study. Various plaque markers were derived from cCTA using a semi-automatic software prototype and deep machine learning–based CT-FFR. The discriminatory value of plaque markers and CT-FFR to identify lesion-specific ischemia on a per-vessel basis was evaluated using invasive FFR as the reference standard.
Results
One hundred three lesion-containing vessels were investigated. 32/103 lesions were hemodynamically significant by invasive FFR. In a multivariate analysis (adjusted for Framingham risk score), the following markers showed predictive value for lesion-specific ischemia (odds ratio [OR]): lesion length (OR 1.15,
p
= 0.037), non-calcified plaque volume (OR 1.02,
p
= 0.007), napkin-ring sign (OR 5.97,
p
= 0.014), and CT-FFR (OR 0.81,
p
< 0.0001). A receiver operating characteristics analysis showed the benefit of identifying plaque markers over cCTA stenosis grading alone, with AUCs increasing from 0.61 with ≥ 50% stenosis to 0.83 with addition of plaque markers to detect lesion-specific ischemia. Further incremental benefit was realized with the addition of CT-FFR (AUC 0.93).
Conclusion
Coronary CTA–derived plaque markers portend predictive value to identify lesion-specific ischemia when compared to cCTA stenosis grading alone. The addition of CT-FFR to plaque markers shows incremental discriminatory power.
Key Points
• Coronary CT angiography (cCTA)–derived quantitative plaque markers of atherosclerosis portend high discriminatory power to identify lesion-specific ischemia.
• Coronary CT angiography–derived fractional flow reserve (CT-FFR) shows superior diagnostic performance over cCTA alone in detecting lesion-specific ischemia.
• A combination of plaque markers with CT-FFR provides incremental discriminatory value for detecting flow-limiting stenosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0938-7994 1432-1084 |
DOI: | 10.1007/s00330-018-5834-z |