Study on deformation of titanium thin-walled part in milling process
Machining of thin-walled parts is a key process in aerospace industry. The part deflection caused by the cutting force is difficult to predict and control. In order to predict the cutting deformation of a titanium alloy Ti6Al4V thin-walled part in milling process, in this paper, the three-dimensiona...
Saved in:
Published in | Journal of materials processing technology Vol. 209; no. 6; pp. 2788 - 2793 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
19.03.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Machining of thin-walled parts is a key process in aerospace industry. The part deflection caused by the cutting force is difficult to predict and control. In order to predict the cutting deformation of a titanium alloy Ti6Al4V thin-walled part in milling process, in this paper, the three-dimensional finite element models of a helical tool and a thin-walled part with a cantilever are established. In the simulation process, milling chips are formed along with the introduction of the friction model between cutter and chip and the chip separation method. Using the established three finite element models, milling process is simulated. With the simulation cutting parameters, milling experiment is carried out. Consequently, a comparison of the results between the simulated and experimental cutting deformation are obtained. The results show that the established finite element models are accurate and can be used to predict cutting deformation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2008.06.029 |