A high-resolution X chromosome copy-number variation map in fertile females and women with primary ovarian insufficiency

Purpose Sex-biased expression of genes on the X chromosome is accomplished by a complex mechanism of dosage regulation that leads to anatomical and physiological differences between males and females. Copy-number variations (CNVs) may impact the human genome by either affecting gene dosage or distur...

Full description

Saved in:
Bibliographic Details
Published inGenetics in medicine Vol. 21; no. 10; pp. 2275 - 2284
Main Authors Yatsenko, Svetlana A., Wood-Trageser, Michelle, Chu, Tianjiao, Jiang, Huaiyang, Rajkovic, Aleksandar
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.10.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Sex-biased expression of genes on the X chromosome is accomplished by a complex mechanism of dosage regulation that leads to anatomical and physiological differences between males and females. Copy-number variations (CNVs) may impact the human genome by either affecting gene dosage or disturbing a chromosome structural and/or functional integrity. Methods We performed a high-resolution CNV profiling to investigate the X chromosome integrity in cohorts of 269 fertile females and 111 women affected with primary ovarian insufficiency (POI) and assessed CNVs impact into functional and nonfunctional genomic elements. Results In POI patients, we observed a 2.5-fold enrichment for rare CNVs comprising ovary-expressed genes, and genes implicated in autoimmune response and apoptotic signaling. Moreover, there was a higher prevalence of deletions encompassing genes that escape X inactivation, noncoding RNAs, and intergenic DNA sequences among POI females, highlighting structural differences between X chromosomes of fertile and POI females. Furthermore, we discovered a ~4% carrier incidence for X-linked disorders among fertile women. Conclusion We constructed a high-resolution map of female-specific CNVs that provides critical insights into the spectrum of human genetic variation, sex-specific disease risk factors, and reproductive potential. We discovered novel CNVs associated with ovarian dysfunction and support polygenic models for POI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1098-3600
1530-0366
DOI:10.1038/s41436-019-0505-2