BioWatch: A Noninvasive Wrist-Based Blood Pressure Monitor That Incorporates Training Techniques for Posture and Subject Variability

Noninvasive continuous blood pressure (BP) monitoring is not yet practically available for daily use. Challenges include making the system easily wearable, reducing noise level and improving accuracy. Variations in each person's physical characteristics, as well as the possibility of different...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 5; pp. 1291 - 1300
Main Authors Thomas, Simi Susan, Nathan, Viswam, Chengzhi Zong, Soundarapandian, Karthikeyan, Xiangrong Shi, Jafari, Roozbeh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Noninvasive continuous blood pressure (BP) monitoring is not yet practically available for daily use. Challenges include making the system easily wearable, reducing noise level and improving accuracy. Variations in each person's physical characteristics, as well as the possibility of different postures, increase the complexity of continuous BP monitoring, especially outside the hospital. This study attempts to provide an easily wearable solution and proposes training to specific posture and individual for further improving accuracy. The wrist watch-based system we developed can measure electrocardiogram and photoplethysmogram. From these two signals, we measure pulse transit time through which we can obtain systolic and diastolic blood pressure through regression techniques. In this study, we investigate various functions to perform the training to obtain blood pressure. We validate measurements on different postures and subjects, and show the value of training the device to each posture and each subject. We observed that the average RMSE between the measured actual systolic BP and calculated systolic BP is between 7.83 to 9.37 mmHg across 11 subjects. The corresponding range of error for diastolic BP is 5.77 to 6.90 mmHg. The system can also automatically detect the arm position of the user using an accelerometer with an average accuracy of 98%, to make sure that the sensor is kept at the proper height. This system, called BioWatch, can potentially be a unified solution for heart rate, SPO2 and continuous BP monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2015.2458779