Low-Order Stabilization of LTI Systems With Time Delay

This paper considers the problem of stabilizing a single-input-single-output (SISO) linear time-invariant (LTI) plant with known time delay using a low-order controller, such as a Proportional (P), a Proportional-Integral (PI), or a proportional-integral-derivative (PID) controller. For the SISO LTI...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 54; no. 4; pp. 774 - 787
Main Authors OU, Lin-Lin, ZHANG, Wei-Dong, LI YU
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers the problem of stabilizing a single-input-single-output (SISO) linear time-invariant (LTI) plant with known time delay using a low-order controller, such as a Proportional (P), a Proportional-Integral (PI), or a proportional-integral-derivative (PID) controller. For the SISO LTI system with time delay, the closed-loop characteristic function is a quasipolynomial that possesses the following features: all its infinite roots are located on the left of certain vertical line of the complex plane, and the number of its unstable roots is finite. Necessary and sufficient conditions for the stability of LTI systems with time delay are first presented by employing an extended Hermite-Biehler Theorem applicable to quasi-polynomials. Based on the conditions, analytical algorithms are then proposed to compute the stabilizing sets of P, PI and PID controllers. The resulting characterizations of the stabilizing sets for P, PI and PID controllers are analogous to the Youla parameterization of all stabilizing controllers for plants without time delay. Numerical examples are provided to illustrate the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2009.2014935