Investigation on Plugging and Profile Control of Polymer Microspheres as a Displacement Fluid in Enhanced Oil Recovery

Polymer microspheres (PMs) are used as a new material to recover residual oil left in unswept oil areas after secondary recovery methods. The fact that the PMs plug the macropores causes the flow direction of the injection fluid to be transferred from macropores to micropores. In order to investigat...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 11; no. 12; p. 1993
Main Authors Nie, Xiangrong, Chen, Junbin, Cao, Yi, Zhang, Jinyuan, Zhao, Wenjing, He, Yanlong, Hou, Yunyi, Yuan, Shaomin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.12.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer microspheres (PMs) are used as a new material to recover residual oil left in unswept oil areas after secondary recovery methods. The fact that the PMs plug the macropores causes the flow direction of the injection fluid to be transferred from macropores to micropores. In order to investigate the plugging and profile control mechanisms of PMs in reservoirs, four kinds of PMs with different particle sizes and four kinds of artificial cores with different permeability were selected for flooding tests, including plugging experiments and profile control experiments. The pore throat size distribution of cores was characterized by nuclear magnetic resonance (NMR) technology. The particle size distribution of PMs used in the experiment was characterized using a laser particle size analyzer. The results showed that there are six matching relationships existing simultaneously between pore throats and PMs based on theoretical analysis, which are completely plugging, single plugging, bridge plugging, smooth passing, deposition, and deformable passing. A key principle for optimizing PMs in profile control is that the particle size of the selected PMs can enter the high permeability layer well, but it is difficult for it to enter the low permeability layer. The results of this paper provide a theoretical basis for the optimal particle size of PMs during the oil field profile control process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11121993