Conductors of wildly ramified covers, II

Consider a wildly ramified G-Galois cover of curves φ:Y→ P 1 k branched at only one point over an algebraically closed field k of characteristic p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers φ when the Sylow p-subgroups of G have order p....

Full description

Saved in:
Bibliographic Details
Published inComptes rendus. Mathématique Vol. 335; no. 5; pp. 485 - 487
Main Author Pries, Rachel J
Format Journal Article
LanguageEnglish
Published Paris Elsevier SAS 01.01.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Consider a wildly ramified G-Galois cover of curves φ:Y→ P 1 k branched at only one point over an algebraically closed field k of characteristic p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers φ when the Sylow p-subgroups of G have order p. To cite this article: R.J. Pries, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 485–487. Soit k un corps algébriquement clos de caractéristique p. Soit φ :Y→ P 1 k un revêtement fini galoisien, de groupe G, ramifié seulement au-dessus d'un point (avec ramification sauvage). On montre l'existence d'un revêtement de ce type avec tous conducteurs suffisamment grands quand les p-Sylow de G sont d'ordre p. La démonstration consiste à étudier la géométrie formelle. Pour citer cet article : R.J. Pries, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 485–487.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1631-073X
1778-3569
DOI:10.1016/S1631-073X(02)02492-5