Conductors of wildly ramified covers, II
Consider a wildly ramified G-Galois cover of curves φ:Y→ P 1 k branched at only one point over an algebraically closed field k of characteristic p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers φ when the Sylow p-subgroups of G have order p....
Saved in:
Published in | Comptes rendus. Mathématique Vol. 335; no. 5; pp. 485 - 487 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Paris
Elsevier SAS
01.01.2002
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Consider a wildly ramified
G-Galois cover of curves
φ:Y→
P
1
k
branched at only one point over an algebraically closed field
k of characteristic
p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers
φ when the Sylow
p-subgroups of
G have order
p.
To cite this article: R.J. Pries, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 485–487.
Soit
k un corps algébriquement clos de caractéristique
p. Soit
φ :Y→
P
1
k
un revêtement fini galoisien, de groupe
G, ramifié seulement au-dessus d'un point (avec ramification sauvage). On montre l'existence d'un revêtement de ce type avec tous conducteurs suffisamment grands quand les
p-Sylow de
G sont d'ordre
p. La démonstration consiste à étudier la géométrie formelle.
Pour citer cet article : R.J. Pries, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 485–487. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1631-073X 1778-3569 |
DOI: | 10.1016/S1631-073X(02)02492-5 |