Next-Generation Automated Vehicle Location Systems: Positioning at the Lane Level

The majority of today's automated vehicle location (AVL) systems use Global Positioning System (GPS) technology, which can provide position information with an accuracy of approximately 15 m. Recently, low-cost Differential GPS (DGPS) receivers, which have a positioning accuracy of approximate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 9; no. 1; pp. 48 - 57
Main Authors Jie Du, Barth, M.J.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.03.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The majority of today's automated vehicle location (AVL) systems use Global Positioning System (GPS) technology, which can provide position information with an accuracy of approximately 15 m. Recently, low-cost Differential GPS (DGPS) receivers, which have a positioning accuracy of approximate 2-3 m, have become available. With this increased accuracy, it is now possible to perform AVL down to specific roadway lanes. In this paper, a vehicle-lane-determining system is described, consisting of an onboard DGPS receiver that is connected with a wireless communications channel, a unique lane-level digital roadway database, a developed lane-matching algorithm, and a real-time vehicle location display. Lane-level positioning opens up the door for a number of new intelligent transportation system applications such as better fleet management, lane-based traffic measurements from probe vehicles, and lane-level navigation. The developed low-cost system has been tested on a number of roadways and has performed very well when used with accurately surveyed map data. Based on more than 100 000 s, it has correctly determined the lane 97% of the time.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2007.908141