The Influence of Polyanions and Polycations on Bacteriophage Activity

Phage therapy is a great alternative to antibiotic drugs, but it can’t effectively overcome the over-acidic medium of the stomach. We offer the use of polyelectrolyte microcapsules as a protective means of bacteriophage. It is necessary to understand the influence of polyelectrolytes on bacteriophag...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 6; p. 914
Main Authors Musin, Egor V., Kim, Aleksandr L., Dubrovskii, Alexey V., Kudryashova, Ekaterina B., Ariskina, Elena V., Tikhonenko, Sergey A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phage therapy is a great alternative to antibiotic drugs, but it can’t effectively overcome the over-acidic medium of the stomach. We offer the use of polyelectrolyte microcapsules as a protective means of bacteriophage. It is necessary to understand the influence of polyelectrolytes on bacteriophage survival. The work studied the effect of polyanions and polycations on the coliprotetic bacteriophage’s viability. We have shown that polyallylamine decreased bacteriophage’s viability during increasing polyelectrolyte concentration and polyarginine had a lower inhibitory effect (then PAH) on the activity of the bacteriophage due to polyelectrolyte concentration from 0.05 to 5 mg/mL. It was shown that the inhibition of the bacteriophage by polyallylamine had an electrostatic nature and the use of high ionic strength prevented the formation of the PAH-protein capsid complex. Polystyrene sulfonate does not affect bacteriophage viability during increasing polyelectrolyte concentration from 0.05 mg/mL to 1 mg/mL. Polystyrene sulfonate decreases the viability of bacteriophage from 5 mg/mL of polyelectrolyte concentration. Dextran sulfate inhibits bacteriophage activity at 20–30%. Dextran inhibits bacteriophage activity by 80% at diapason concentration from 0.05 to 5 mg/mL and loses the inhibition effect from a concentration of 5 mg/mL.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13060914