A Transparent Hydrogel-Ionic Conductor with High Water Retention and Self-Healing Ability

This study presents a transparent and ion-conductive hydrogel with suppressed water loss. The hydrogel comprises agarose polymer doped with sucrose and sodium chloride salt (NaCl-Suc/A hydrogel). Sucrose increases the water retention of the agarose gel, and the Na and Cl ions dissolved in the gel pr...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 2; p. 288
Main Authors Lee, Yangwoo, So, Ju-Hee, Koo, Hyung-Jun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a transparent and ion-conductive hydrogel with suppressed water loss. The hydrogel comprises agarose polymer doped with sucrose and sodium chloride salt (NaCl-Suc/A hydrogel). Sucrose increases the water retention of the agarose gel, and the Na and Cl ions dissolved in the gel provide ionic conductivity. The NaCl-Suc/A gel shows high retention capability and maintains a 45% water uptake after 4 h of drying at 60 °C without encapsulation at the optimum gel composition. The doped NaCl-Suc/A hydrogel demonstrates improved mechanical properties and ionic conductivity of 1.6 × 10 (S/cm) compared to the pristine agarose hydrogel. The self-healing property of the gel restores the electrical continuity when reassembled after cutting. Finally, to demonstrate a potential application of the ion-conductive hydrogel, a transparent and flexible pressure sensor is fabricated using the NaCl-Suc/A hydrogel, and its performance is demonstrated. The results of this study could contribute to solving problems with hydrogel-based devices such as rapid dehydration and poor mechanical properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17020288