Investigating the Accessibility of the Closed Domain Conformation of Citrate Synthase using Essential Dynamics Sampling

A molecular dynamics study of pig heart citrate synthase is presented that aims to directly address the question of whether, for this enzyme, the ligand-induced closed domain conformation is accessible to the open unliganded enzyme. The approach utilises the technique of essential dynamics sampling,...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 339; no. 3; pp. 515 - 525
Main Authors Daidone, Isabella, Roccatano, Danilo, Hayward, Steven
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 04.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A molecular dynamics study of pig heart citrate synthase is presented that aims to directly address the question of whether, for this enzyme, the ligand-induced closed domain conformation is accessible to the open unliganded enzyme. The approach utilises the technique of essential dynamics sampling, which is used in two modes. In exploring mode, the enzyme is encouraged to explore domain conformations it might not normally sample in free molecular dynamics simulation. In targeting mode, the enzyme is encouraged to adopt the domain conformation of a target structure. Using both modes extensively, it has been found that when the enzyme is prepared from a crystallographic open-domain structure and is in the unliganded state, it is unable to adopt the crystallographic closed-domain conformation of the liganded enzyme. Likewise, when the enzyme is prepared from the crystallographic closed liganded conformation with the ligands removed, it is unable to adopt the crystallographic open domain conformation. Structural investigations point to a common structural difference that is the source of this energy barrier; namely, the shift of α-helix 328–341 along its own axis relative to the large domain. Without this shift, the domains are unable to close or open fully. The charged substrate, oxaloacetate, binds near the base of this helix in the large domain and the interaction of Arg329 at the base of the helix with oxaloacetate is one that is consistent with the shift of this helix in going from the crystallographic open to closed structure. Therefore, the results suggest that without the substrate the enzyme remains in a partially open conformation ready to receive the substrate. In this way, the efficiency of the enzyme should be increased over one that is closed part of the time, with its binding site inaccessible to the substrate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2004.04.007