Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change

A part of the DELOS research focused on wave transformation at low-crested structures, called LCS. This paper gives a summary of all results. Wave transmission on rubble mound structures has been subject for more flume tests in the DELOS programme and simultaneously an existing database has been inc...

Full description

Saved in:
Bibliographic Details
Published inCoastal engineering (Amsterdam) Vol. 52; no. 10; pp. 915 - 929
Main Authors van der Meer, Jentsje W., Briganti, Riccardo, Zanuttigh, Barbara, Wang, Baoxing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:A part of the DELOS research focused on wave transformation at low-crested structures, called LCS. This paper gives a summary of all results. Wave transmission on rubble mound structures has been subject for more flume tests in the DELOS programme and simultaneously an existing database has been increased extensively by receiving data from other researchers in the world. This new database consists of more than 2300 tests and has been used to come up with the best 2D wave transmission formula for rubble mound LCS, although not necessarily new as existing ones have been evaluated. Oblique wave attack on LCS was a second objective within DELOS. Results were analysed leading to new empirical transmission formulae for smooth LCS and to conclusions on 3D effects for both rubble mound and smooth LCS. The spectral shape changes due to wave transmission and this change has been subject of analysis for all new test data described above. Although analysis has not been finished completely, former assumptions on spectral change were more or less confirmed. Finally, some analysis was performed on reflection at LCS and a first formula was derived to take into account the effect that wave overtopping or transmission reduces reflection and must be dependent on the crest height of the structure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-3839
1872-7379
DOI:10.1016/j.coastaleng.2005.09.005