Thin-film persistent current switch
We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a...
Saved in:
Published in | IEEE transactions on applied superconductivity Vol. 15; no. 3; pp. 3821 - 3826 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2005.847491 |