A study of the control of oral plaque biofilms via antibacterial photodynamic therapy
Aim The aim of this study was to provide preliminary data on the most effective erythrosine concentration and light dose for the erythrosine-based photodynamic therapy (PDT) of oral plaque biofilms formed in vivo. Method A randomised controlled study with 15 volunteers was carried out to investigate...
Saved in:
Published in | European archives of paediatric dentistry Vol. 16; no. 6; pp. 433 - 440 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aim
The aim of this study was to provide preliminary data on the most effective erythrosine concentration and light dose for the erythrosine-based photodynamic therapy (PDT) of oral plaque biofilms formed in vivo.
Method
A randomised controlled study with 15 volunteers was carried out to investigate the effect of photosensitiser and light dose on the killing of bacteria in oral plaque biofilms formed in vivo. All volunteers wore a removable in situ appliance carrying six enamel slabs for two phases of 2 weeks each. During this time, plaque biofilms accumulated on the enamel slabs. The slabs were then removed from the appliances for PDT treatment in vitro. In the first phase of the study, erythrosine doses of 22 and 220 μM were used for the photodynamic treatment of the biofilms. In the second phase, the erythrosine concentration was kept constant, and the light dose was varied. Following treatment, the biofilms were disaggregated, and the total bacterial killing was determined using colony counting.
Results
The erythrosine dose of 220 μM caused the most cell killing relative to controls. Fifteen minutes of continuous irradiation with light and light fractionation of 5 × 1 min irradiation separated by 2-min-dark recovery periods were found to be the most effective bactericidal regimes.
Conclusion
Erythrosine-based PDT shows promise as an antibacterial treatment for oral plaque biofilms. Further research is needed to prove its clinical and cost-effectiveness compared with current best practice. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-News-1 ObjectType-Feature-3 content type line 23 |
ISSN: | 1818-6300 1996-9805 |
DOI: | 10.1007/s40368-014-0165-5 |