Sensor-Integrated Inverse Design of Sustainable Food Packaging Materials via Generative Adversarial Networks

This study introduces a novel framework for the inverse design of sustainable food packaging materials using generative adversarial networks (GANs) and the recently released OMat24 dataset containing 110 million DFT-calculated inorganic material structures. Our approach transforms traditional materi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 11; p. 3320
Main Authors Liu, Yang, Guo, Lanting, Hu, Xiaoyu, Zhou, Mengjie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study introduces a novel framework for the inverse design of sustainable food packaging materials using generative adversarial networks (GANs) and the recently released OMat24 dataset containing 110 million DFT-calculated inorganic material structures. Our approach transforms traditional material discovery paradigms by enabling end-to-end design from desired performance metrics to material composition. We developed a GAN-driven inverse design architecture specifically optimized for food packaging applications, integrating sensor-derived data on critical constraints such as biodegradability and barrier properties directly into the generative process. This integration occurs at three levels: (1) sensor-measured properties define conditioning targets for the GAN, (2) sensor data train the property prediction network, and (3) sensor-based characterization validates generated materials. An enhanced EquiformerV2 graph neural network was employed to accurately predict the formation energy, stability, and sensor-measurable properties of candidate materials. The model achieved a mean absolute error of 12 meV/atom for formation energy on the OMat24 test set (25% improvement over baseline models), while predictions of sensor-measured functional properties reached R2 values of 0.84–0.89 through the integration of experimental measurements and physics-based proxy models. The framework successfully generated over 100 theoretically viable candidate materials, with 20% exhibiting superior barrier properties and controlled degradation characteristics. Our computational approach demonstrated a 20–100× acceleration in screening efficiency compared to traditional DFT calculations while maintaining high accuracy. This work presents a significant advancement in computational materials discovery for sustainable packaging applications, offering a promising pathway to address the urgent global challenges of food waste and plastic pollution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1424-8220
1424-8220
DOI:10.3390/s25113320