Therapeutic potential of breakers of advanced glycation end product–protein crosslinks
Long-lived structural proteins, collagen and elastin, undergo continual non-enzymatic crosslinking during aging and in diabetic individuals. This abnormal protein crosslinking is mediated by advanced glycation end products (AGEs) generated by non-enzymatic glycosylation of proteins by glucose. The A...
Saved in:
Published in | Archives of Biochemistry and Biophysics Vol. 419; no. 1; pp. 89 - 96 |
---|---|
Main Authors | , , |
Format | Book Review Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Long-lived structural proteins, collagen and elastin, undergo continual non-enzymatic crosslinking during aging and in diabetic individuals. This abnormal protein crosslinking is mediated by advanced glycation end products (AGEs) generated by non-enzymatic glycosylation of proteins by glucose. The AGE-derived protein crosslinking of structural proteins contributes to the complications of long-term diabetes such as nephropathy, retinopathy, and neuropathy. AGE-crosslinks have also been implicated in age-related cardiovascular diseases. Potential treatment strategies for these AGE-derived complications include prevention of AGE-formation and breaking of the existing AGE-crosslinks. The therapeutic potential of the AGE-inhibitor, pimagedine (aminoguanidine), has been extensively investigated in animal models and in Phase 3 clinical trials. This review presents the pre-clinical and clinical studies using ALT-711, a highly potent AGE-crosslink breaker that has the ability to reverse already-formed AGE-crosslinks. Oral administration of ALT-711 has resulted in a rapid improvement in the elasticity of stiffened myocardium in experimental animals. Topical administration of ALT-711 was effective in improving the skin hydration of aged rats. The therapeutic potential of crosslink breakers for cardiovascular complications and dermatological alterations associated with aging and diabetes is discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2003.08.016 |