Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey
Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was emp...
Saved in:
Published in | Journal of power sources Vol. 335; pp. 20 - 30 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMCs). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387–0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38–4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g−1 after 10 cycles at 100 mA g−1 and excellent rate capability and cycling stability of 722 mA h g−1 after 200 cycles at 1 A g−1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g−1 and stable reversible capacity of 394 mA h g−1 at 100 mA g−1.
A SBA-15 template process was used to prepare honey derived mesoporous nitrogen-doped carbons (HMNCs), which possess narrow pore size distributions centering at around 4 nm and satisfactory N contents, exhibiting excellent lithium and sodium anodic performances. [Display omitted]
•Honey is employed as a nitrogen-containing carbon precursor.•A novel highly ordered nitrogen-doped mesoporous carbon is obtained.•The obtained HMNCs exhibit excellent lithium and sodium anodic performance.•The mechanism of Li+/Na+ storage in HMNCs is investigated. |
---|---|
AbstractList | Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMCs). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387–0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38–4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g−1 after 10 cycles at 100 mA g−1 and excellent rate capability and cycling stability of 722 mA h g−1 after 200 cycles at 1 A g−1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g−1 and stable reversible capacity of 394 mA h g−1 at 100 mA g−1.
A SBA-15 template process was used to prepare honey derived mesoporous nitrogen-doped carbons (HMNCs), which possess narrow pore size distributions centering at around 4 nm and satisfactory N contents, exhibiting excellent lithium and sodium anodic performances. [Display omitted]
•Honey is employed as a nitrogen-containing carbon precursor.•A novel highly ordered nitrogen-doped mesoporous carbon is obtained.•The obtained HMNCs exhibit excellent lithium and sodium anodic performance.•The mechanism of Li+/Na+ storage in HMNCs is investigated. |
Author | Xie, Jun Meng, Yan Zhang, Yongzhi Chen, Li Xiao, Dan Guo, Yong |
Author_xml | – sequence: 1 givenname: Yongzhi surname: Zhang fullname: Zhang, Yongzhi organization: Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China – sequence: 2 givenname: Li surname: Chen fullname: Chen, Li organization: Analytical & Testing Center, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China – sequence: 3 givenname: Yan surname: Meng fullname: Meng, Yan organization: College of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China – sequence: 4 givenname: Jun surname: Xie fullname: Xie, Jun organization: College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China – sequence: 5 givenname: Yong surname: Guo fullname: Guo, Yong email: guoy@scu.edu.cn organization: College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China – sequence: 6 givenname: Dan surname: Xiao fullname: Xiao, Dan email: xiaodan@scu.edu.cn organization: Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China |
BookMark | eNqFkE1OwzAQhS0EEm3hCsgXSLCTJk4kFqCKP6kSG1hbjj1uHDV2ZbtFvT2OChs2Xc2M5n1PM2-OLq2zgNAdJTkltL4f8mHnvoPb-7xIc06anLT1BZrRhpVZwarqEs1IyZqMsaq8RvMQBkIIpYzMkFib2Jv9iIVVODg1tSE6LzaAjcW92fTbI3ZegQeFRwhu57zbB2xN9G4DNlNulzZS-M7ZgJPOHNKsvRtxnw493qArLbYBbn_rAn29PH-u3rL1x-v76mmdySWtYlaJohZlwZqGSVnpuhFs2QmogZadbikTEjpF65YAbVugUjNGOlqyahJrvSwX6OHkK70LwYPm0kQRjbPRC7PllPApLj7wv7j4FBcnDU9xJbz-h--8GYU_ngcfTyCk5w4GPA_SgJWgjAcZuXLmnMUPDxaPSw |
CitedBy_id | crossref_primary_10_1039_D2DT00924B crossref_primary_10_1016_j_apsusc_2023_156994 crossref_primary_10_1016_j_jcou_2020_01_020 crossref_primary_10_1016_j_diamond_2024_111676 crossref_primary_10_1002_celc_201800300 crossref_primary_10_1002_smll_201804600 crossref_primary_10_1016_j_electacta_2017_08_131 crossref_primary_10_1039_C7TA01394A crossref_primary_10_1002_celc_201700259 crossref_primary_10_1021_acsomega_8b02954 crossref_primary_10_1002_asia_201800132 crossref_primary_10_1021_acsomega_2c06054 crossref_primary_10_1007_s11581_017_2173_z crossref_primary_10_1016_j_cartre_2024_100428 crossref_primary_10_1016_j_jtice_2017_10_036 crossref_primary_10_1002_er_8124 crossref_primary_10_1007_s12274_021_3506_9 crossref_primary_10_1016_j_jechem_2024_11_049 crossref_primary_10_1002_aenm_201702403 crossref_primary_10_1002_cey2_196 crossref_primary_10_1039_D0CC02840A crossref_primary_10_1021_acsanm_1c02621 crossref_primary_10_1021_acs_energyfuels_2c01309 crossref_primary_10_1002_adsu_201700081 crossref_primary_10_1016_j_jcis_2019_05_021 crossref_primary_10_1002_adfm_202208349 crossref_primary_10_1039_C7SE00169J crossref_primary_10_1016_j_jpowsour_2023_233329 crossref_primary_10_3390_ma11091568 crossref_primary_10_1007_s10853_018_2472_4 crossref_primary_10_1007_s10853_018_2295_3 crossref_primary_10_1039_D0TA05094F crossref_primary_10_1016_j_jcis_2021_08_005 crossref_primary_10_1016_j_powtec_2018_11_100 crossref_primary_10_1016_j_rinma_2022_100297 crossref_primary_10_1016_j_nxmate_2024_100450 crossref_primary_10_1016_j_jmst_2021_06_016 crossref_primary_10_1016_j_apsusc_2019_03_143 crossref_primary_10_1016_j_jallcom_2019_03_370 crossref_primary_10_1002_slct_201900818 crossref_primary_10_1016_j_matchemphys_2018_06_076 crossref_primary_10_1016_j_pmatsci_2020_100770 crossref_primary_10_1016_j_electacta_2019_03_001 crossref_primary_10_1016_j_mseb_2022_116064 crossref_primary_10_1039_C8QI01057A crossref_primary_10_1002_celc_202101182 crossref_primary_10_1007_s00604_018_3010_4 crossref_primary_10_1021_acsaem_1c00521 crossref_primary_10_1021_acs_energyfuels_1c01226 crossref_primary_10_1016_j_electacta_2019_134973 crossref_primary_10_1080_10667857_2018_1545392 crossref_primary_10_1039_C7CS00787F crossref_primary_10_1016_j_electacta_2018_02_147 crossref_primary_10_1016_j_diamond_2022_109064 crossref_primary_10_1016_j_jelechem_2023_117525 crossref_primary_10_1016_j_jpowsour_2020_228098 crossref_primary_10_1039_D0RA08993A crossref_primary_10_1002_adfm_202201584 crossref_primary_10_1007_s41918_022_00178_y crossref_primary_10_1016_j_powtec_2020_05_060 crossref_primary_10_1142_S1793292019501042 crossref_primary_10_1007_s11708_017_0491_5 crossref_primary_10_1016_j_apsusc_2018_04_251 crossref_primary_10_1002_ente_202300493 crossref_primary_10_1038_s41467_024_45460_3 crossref_primary_10_1039_D4GC06509C crossref_primary_10_1016_j_ijhydene_2017_12_151 crossref_primary_10_1016_j_jpowsour_2017_05_066 crossref_primary_10_1039_C7TA01958K crossref_primary_10_1016_j_rser_2024_114304 crossref_primary_10_1002_elsa_202100010 crossref_primary_10_1007_s11581_019_03146_7 crossref_primary_10_1007_s12274_023_5540_2 crossref_primary_10_1002_ente_201700674 crossref_primary_10_1002_slct_201801330 crossref_primary_10_1016_j_indcrop_2023_116628 crossref_primary_10_1016_j_chemphys_2020_111074 crossref_primary_10_1039_C9RA01749F crossref_primary_10_1002_slct_201702126 crossref_primary_10_1002_cjce_24921 crossref_primary_10_1016_j_jcis_2020_03_092 crossref_primary_10_1016_j_cplett_2019_137028 crossref_primary_10_1016_j_jpowsour_2021_229459 crossref_primary_10_3390_nano12010022 crossref_primary_10_1016_j_vacuum_2021_110535 crossref_primary_10_1039_C9NJ01397K crossref_primary_10_3390_coatings13111960 crossref_primary_10_3390_nano10071398 crossref_primary_10_1021_acsami_1c14334 crossref_primary_10_1021_acsami_7b10882 crossref_primary_10_3390_pr12102229 crossref_primary_10_1016_j_jpowsour_2022_231993 crossref_primary_10_20964_2018_03_33 crossref_primary_10_1021_acsomega_4c00797 crossref_primary_10_1016_j_apsusc_2017_02_213 |
Cites_doi | 10.1039/C5GC02122G 10.1016/j.matlet.2013.07.026 10.1039/C4NR05878J 10.1016/j.carbon.2014.12.001 10.1016/j.elecom.2008.10.041 10.1021/nn502045y 10.1002/adma.200902812 10.1002/ijch.201400118 10.1039/C5TA02873F 10.1039/C4GC02185A 10.1016/0025-5416(77)90052-0 10.1021/nn404640c 10.1039/C4TA05451B 10.1002/anie.201410376 10.1002/cssc.201200680 10.1016/j.electacta.2015.07.059 10.1021/cr500192f 10.1016/j.foodchem.2015.09.051 10.1021/acs.est.5b03882 10.1016/0167-2738(88)90351-7 10.1021/nn2006249 10.1039/C4EE01075B 10.1021/nl3016957 10.1039/c2ee21817h 10.1016/j.carbon.2015.04.091 10.1039/C5TA05118E 10.1126/science.270.5236.590 10.1016/j.electacta.2016.01.006 10.1039/c3ee41444b 10.1039/C4TA00501E 10.1038/ncomms5033 10.1039/c2jm00166g 10.1039/C5GC02397A 10.1016/j.carbon.2012.12.072 10.1149/1.1393348 10.1016/j.electacta.2016.02.083 10.1002/celc.201500437 10.1002/adfm.201200691 10.1021/nn506394r 10.1002/advs.201500195 10.1039/C5TA00050E 10.1126/science.192.4244.1126 10.1002/aenm.201301584 10.1039/c3ta10650k 10.1002/aenm.201100691 10.1021/acsami.5b06898 10.1039/c2ee23599d 10.1002/adfm.200601152 10.1039/C4CS00232F 10.1149/1.3425728 10.1149/1.1379565 10.1039/C4TA06614F 10.1039/C4EE02986K 10.1126/science.aab3798 10.1016/0008-6223(96)00177-7 10.1021/cm900395k 10.1038/451652a 10.1039/c2ee02781j 10.1016/j.jaap.2012.12.016 10.1016/j.electacta.2015.12.002 10.1039/C4RA07995G 10.1039/C4TA02068E 10.1021/acs.nanolett.5b01969 10.1016/j.electacta.2009.10.051 10.1002/adma.201104634 |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2016.08.096 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_jpowsour_2016_08_096 S0378775316311053 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c415t-5a26a327887cc5f68a74bae6e13bf917acebd1690e199e1cf770b1375c5f6ff43 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Thu Apr 24 23:00:03 EDT 2025 Tue Jul 01 01:39:56 EDT 2025 Fri Feb 23 02:27:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Honey Lithium ion battery Sodium ion battery Nitrogen-doped Anode Mesoporous carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-5a26a327887cc5f68a74bae6e13bf917acebd1690e199e1cf770b1375c5f6ff43 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2016_08_096 crossref_primary_10_1016_j_jpowsour_2016_08_096 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2016_08_096 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-15 |
PublicationDateYYYYMMDD | 2016-12-15 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hu, Wang, Wu, Yu, Antonietti, Titirici (bib30) 2010; 22 Li, Xu, Wu, Yu, Wang, Hu, Li, Chen, Huang (bib60) 2015; 3 Sun, Liu, Xu (bib54) 2015; 3 Wang, Xiao, Xing, Xu, Zhang (bib41) 2015; 3 Liu, Xue, Zheng, Dahn (bib39) 1996; 34 Whittingham (bib1) 1976; 192 Li, Xu, Tan, Wang, Holt, Stephenson, Olsen, Mitlin (bib17) 2013; 6 Bommier, Ji (bib14) 2015; 55 Pan, Wang, Zhao, Wu, Zhang, Wang, Jiao (bib40) 2009; 21 Qu, Zhang, Zhang, Ren, Lai, Liu, Li (bib36) 2015; 84 Wang, Qie, Yuan, Zhang, Hu, Huang (bib56) 2013; 55 Ding, Wang, Li, Cui, Karpuzov, Tan, Kohandehghan, Mitlin (bib38) 2015; 8 Lotfabad, Ding, Cui, Kohandehghan, Kalisvaart, Hazelton, Mitlin (bib21) 2014; 8 Palomares, Serras, Villaluenga, Hueso, Carretero-González, Rojo (bib4) 2012; 5 Cao, Xiao, Sushko, Wang, Schwenzer, Xiao, Nie, Saraf, Yang, Liu (bib12) 2012; 12 Lin, Chen, Liu, Yang, Bi, Xu, Huang (bib65) 2015; 350 Wen, He, Zhu, Han, Xu, Matsuda, Ishii, Cumings, Wang (bib10) 2014; 5 Liu, Jia, Sun, Cao, Chen, Zhu, Wu, Qiao, Xu (bib28) 2015; 7 Lv, Zhao, Wen, Xiang, Li, Wang, Liu, Tian (bib53) 2015; 3 Li, Liang, Hou, Zhu, Qian (bib62) 2014; 4 Zhang, Yao, Yang, Zhang, Xu (bib25) 2015; 93 Paraknowitsch, Thomas (bib18) 2013; 6 Mao, Duan, Xu, Zhang, Hu, Zhao, Wang, Chen, Yang (bib29) 2012; 5 Chen, Zhang, Lin, Yang, Meng, Guo, Li, Xiao (bib19) 2014; 2 Ou, Zhang, Chen, Zhao, Meng, Guo, Xiao (bib20) 2015; 3 Yan, Yin, Guo, Wan (bib15) 2014; 4 Hong, Qie, Zeng, Yi, Zhang, Wang, Yin, Wu, Fan, Zhang, Huang (bib57) 2014; 2 Armand, Tarascon (bib3) 2008; 451 Stevens, Dahn (bib11) 2001; 148 Hu, Adelhelm, Smarsly, Hore, Antonietti, Maier (bib13) 2007; 17 Zhu, Akiyama (bib34) 2016; 18 Liu, Luo, Qiao, Yoon, Mochida (bib49) 2010; 55 Ru, Bai, Xiang, Zhou, Chen, Zhao (bib45) 2016; 194 Tang, Fu, White, Yu, Titirici, Antonietti, Maier (bib55) 2012; 2 Kundu, Talaie, Duffort, Nazar (bib7) 2015; 54 Ma, Shao, Cao (bib27) 2012; 22 Bommier, Surta, Dolgos, Ji (bib59) 2015; 15 Stevens, Dahn (bib58) 2000; 147 Selvamani, Ravikumar, Suryanarayanan, Velayutham, Gopukumar (bib46) 2016; 190 Xu, Han, Ding, Nie, Pan, Dou, Li, Zhang (bib52) 2015; 17 Meng, Savage, Deng (bib64) 2015; 49 Wang, Wu, Meng, Ma, Huang, Wang, Zhang (bib26) 2013; 6 Wang, Yu, Shi, Mao, Chen, Liu (bib61) 2016; 188 Qie, Chen, Xiong, Hu, Zou, Hu, Huang (bib24) 2015; 2 Qie, Chen, Wang, Shao, Li, Yuan, Hu, Zhang, Huang (bib37) 2012; 24 Yabuuchi, Kubota, Dahbi, Komaba (bib6) 2014; 114 Arrebola, Caballero, Hernán, Morales, Olivares-Marín, Gómez-Serrano (bib51) 2010; 157 Sun, Wang, Feng, Qiao, Li, He (bib50) 2013; 100 Armand, Touzain (bib2) 1977; 31 Dahn, Zheng, Liu, Xue (bib8) 1995; 270 Dutta, Bhaumik, Wu (bib16) 2014; 7 Yun, Jin (bib44) 2013; 108 Wu, Ren, Xu, Li, Cheng (bib23) 2011; 5 Wang, Schnepp, Titirici (bib47) 2013; 1 Zhang, Wang, Li, Chen (bib48) 2009; 11 Chen, Yu, Liu, Fan, Zhao, Zhang, Qiu (bib33) 2015; 7 Slater, Kim, Lee, Johnson (bib5) 2013; 23 Ding, Wang, Li, Kohandehghan, Cui, Xu, Zahiri, Tan, Lotfabad, Olsen (bib32) 2013; 7 Wu, Buchholz, Vaalma, Giffin, Passerini (bib63) 2016; 3 Lv, Wen, Xiang, Zhao, Li, Wang, Liu, Tian (bib42) 2015; 176 da Silva, Gauche, Gonzaga, Costa, Fett (bib35) 2016; 196 Hou, Cao, Idrees, Ma (bib22) 2015; 9 Ge, Fouletier (bib9) 1988; 28 Zhou, Chen, Bai, Long, Liao, Ren, Yang (bib43) 2016; 18 Titirici, White, Brun, Budarin, Su, del Monte, Clark, MacLachlan (bib31) 2015; 44 Wang (10.1016/j.jpowsour.2016.08.096_bib61) 2016; 188 Paraknowitsch (10.1016/j.jpowsour.2016.08.096_bib18) 2013; 6 Sun (10.1016/j.jpowsour.2016.08.096_bib50) 2013; 100 Chen (10.1016/j.jpowsour.2016.08.096_bib19) 2014; 2 Ru (10.1016/j.jpowsour.2016.08.096_bib45) 2016; 194 Zhu (10.1016/j.jpowsour.2016.08.096_bib34) 2016; 18 Meng (10.1016/j.jpowsour.2016.08.096_bib64) 2015; 49 Qie (10.1016/j.jpowsour.2016.08.096_bib37) 2012; 24 Palomares (10.1016/j.jpowsour.2016.08.096_bib4) 2012; 5 Yabuuchi (10.1016/j.jpowsour.2016.08.096_bib6) 2014; 114 Whittingham (10.1016/j.jpowsour.2016.08.096_bib1) 1976; 192 Chen (10.1016/j.jpowsour.2016.08.096_bib33) 2015; 7 Stevens (10.1016/j.jpowsour.2016.08.096_bib11) 2001; 148 Lv (10.1016/j.jpowsour.2016.08.096_bib42) 2015; 176 Slater (10.1016/j.jpowsour.2016.08.096_bib5) 2013; 23 Xu (10.1016/j.jpowsour.2016.08.096_bib52) 2015; 17 Qie (10.1016/j.jpowsour.2016.08.096_bib24) 2015; 2 Kundu (10.1016/j.jpowsour.2016.08.096_bib7) 2015; 54 Wu (10.1016/j.jpowsour.2016.08.096_bib23) 2011; 5 Ge (10.1016/j.jpowsour.2016.08.096_bib9) 1988; 28 Wang (10.1016/j.jpowsour.2016.08.096_bib26) 2013; 6 Wang (10.1016/j.jpowsour.2016.08.096_bib41) 2015; 3 Stevens (10.1016/j.jpowsour.2016.08.096_bib58) 2000; 147 Arrebola (10.1016/j.jpowsour.2016.08.096_bib51) 2010; 157 Ma (10.1016/j.jpowsour.2016.08.096_bib27) 2012; 22 Armand (10.1016/j.jpowsour.2016.08.096_bib2) 1977; 31 Liu (10.1016/j.jpowsour.2016.08.096_bib49) 2010; 55 Mao (10.1016/j.jpowsour.2016.08.096_bib29) 2012; 5 Dutta (10.1016/j.jpowsour.2016.08.096_bib16) 2014; 7 Lv (10.1016/j.jpowsour.2016.08.096_bib53) 2015; 3 Hu (10.1016/j.jpowsour.2016.08.096_bib13) 2007; 17 Pan (10.1016/j.jpowsour.2016.08.096_bib40) 2009; 21 Dahn (10.1016/j.jpowsour.2016.08.096_bib8) 1995; 270 Ou (10.1016/j.jpowsour.2016.08.096_bib20) 2015; 3 Zhou (10.1016/j.jpowsour.2016.08.096_bib43) 2016; 18 Yan (10.1016/j.jpowsour.2016.08.096_bib15) 2014; 4 Wu (10.1016/j.jpowsour.2016.08.096_bib63) 2016; 3 Zhang (10.1016/j.jpowsour.2016.08.096_bib25) 2015; 93 da Silva (10.1016/j.jpowsour.2016.08.096_bib35) 2016; 196 Li (10.1016/j.jpowsour.2016.08.096_bib60) 2015; 3 Ding (10.1016/j.jpowsour.2016.08.096_bib32) 2013; 7 Cao (10.1016/j.jpowsour.2016.08.096_bib12) 2012; 12 Bommier (10.1016/j.jpowsour.2016.08.096_bib59) 2015; 15 Selvamani (10.1016/j.jpowsour.2016.08.096_bib46) 2016; 190 Hou (10.1016/j.jpowsour.2016.08.096_bib22) 2015; 9 Bommier (10.1016/j.jpowsour.2016.08.096_bib14) 2015; 55 Wang (10.1016/j.jpowsour.2016.08.096_bib47) 2013; 1 Sun (10.1016/j.jpowsour.2016.08.096_bib54) 2015; 3 Lotfabad (10.1016/j.jpowsour.2016.08.096_bib21) 2014; 8 Hong (10.1016/j.jpowsour.2016.08.096_bib57) 2014; 2 Liu (10.1016/j.jpowsour.2016.08.096_bib28) 2015; 7 Li (10.1016/j.jpowsour.2016.08.096_bib17) 2013; 6 Tang (10.1016/j.jpowsour.2016.08.096_bib55) 2012; 2 Titirici (10.1016/j.jpowsour.2016.08.096_bib31) 2015; 44 Zhang (10.1016/j.jpowsour.2016.08.096_bib48) 2009; 11 Ding (10.1016/j.jpowsour.2016.08.096_bib38) 2015; 8 Yun (10.1016/j.jpowsour.2016.08.096_bib44) 2013; 108 Qu (10.1016/j.jpowsour.2016.08.096_bib36) 2015; 84 Lin (10.1016/j.jpowsour.2016.08.096_bib65) 2015; 350 Armand (10.1016/j.jpowsour.2016.08.096_bib3) 2008; 451 Liu (10.1016/j.jpowsour.2016.08.096_bib39) 1996; 34 Li (10.1016/j.jpowsour.2016.08.096_bib62) 2014; 4 Wen (10.1016/j.jpowsour.2016.08.096_bib10) 2014; 5 Hu (10.1016/j.jpowsour.2016.08.096_bib30) 2010; 22 Wang (10.1016/j.jpowsour.2016.08.096_bib56) 2013; 55 |
References_xml | – volume: 3 start-page: 71 year: 2015 end-page: 77 ident: bib60 article-title: Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 194 start-page: 10 year: 2016 end-page: 16 ident: bib45 article-title: Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries publication-title: Electrochim. Acta – volume: 148 start-page: A803 year: 2001 end-page: A811 ident: bib11 article-title: The mechanisms of lithium and sodium insertion in carbon materials publication-title: J. Electrochem. Soc. – volume: 8 start-page: 7115 year: 2014 end-page: 7129 ident: bib21 article-title: High-density sodium and lithium ion battery anodes from banana peels publication-title: ACS Nano – volume: 17 start-page: 1873 year: 2007 end-page: 1878 ident: bib13 article-title: Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability publication-title: Adv. Funct. Mater – volume: 2 start-page: 1500195 year: 2015 ident: bib24 article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries publication-title: Adv. Sci. – volume: 17 start-page: 1668 year: 2015 end-page: 1674 ident: bib52 article-title: Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage publication-title: Green Chem. – volume: 55 start-page: 486 year: 2015 end-page: 507 ident: bib14 article-title: Recent development on anodes for Na-Ion batteries publication-title: Isr. J. Chem. – volume: 7 start-page: 3574 year: 2014 end-page: 3592 ident: bib16 article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications publication-title: Energy Environ. Sci. – volume: 93 start-page: 143 year: 2015 end-page: 150 ident: bib25 article-title: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries publication-title: Carbon – volume: 11 start-page: 130 year: 2009 end-page: 133 ident: bib48 article-title: Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance publication-title: Electrochem. Commun. – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib3 article-title: Building better batteries publication-title: Nature – volume: 100 start-page: 181 year: 2013 end-page: 185 ident: bib50 article-title: A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries publication-title: J. Anal. Appl. Pyrolysis – volume: 5 start-page: 5463 year: 2011 end-page: 5471 ident: bib23 article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries publication-title: ACS Nano – volume: 196 start-page: 309 year: 2016 end-page: 323 ident: bib35 article-title: Honey: chemical composition, stability and authenticity publication-title: Food Chem. – volume: 22 start-page: 813 year: 2010 end-page: 828 ident: bib30 article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass publication-title: Adv. Mater – volume: 55 start-page: 328 year: 2013 end-page: 334 ident: bib56 article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance publication-title: Carbon – volume: 49 start-page: 12543 year: 2015 end-page: 12550 ident: bib64 article-title: Trash to treasure: from harmful algal blooms to high-performance electrodes for sodium-ion batteries publication-title: Environ. Sci. Technol. – volume: 55 start-page: 1696 year: 2010 end-page: 1700 ident: bib49 article-title: Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries publication-title: Electrochim. Acta – volume: 108 start-page: 311 year: 2013 end-page: 315 ident: bib44 article-title: Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries publication-title: Mater. Lett. – volume: 157 start-page: A791 year: 2010 end-page: A797 ident: bib51 article-title: Improving the performance of biomass-derived carbons in Li-Ion batteries by controlling the lithium insertion process publication-title: J. Electrochem. Soc. – volume: 34 start-page: 193 year: 1996 end-page: 200 ident: bib39 article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins publication-title: Carbon – volume: 22 start-page: 8911 year: 2012 end-page: 8915 ident: bib27 article-title: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study publication-title: J. Mater. Chem. – volume: 24 start-page: 2047 year: 2012 end-page: 2050 ident: bib37 article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability publication-title: Adv. Mater – volume: 192 start-page: 1126 year: 1976 end-page: 1127 ident: bib1 article-title: Electrical energy storage and intercalation chemistry publication-title: Science – volume: 15 start-page: 5888 year: 2015 end-page: 5892 ident: bib59 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. – volume: 21 start-page: 3136 year: 2009 end-page: 3142 ident: bib40 article-title: Li storage properties of disordered graphene nanosheets publication-title: Chem. Mater – volume: 12 start-page: 3783 year: 2012 end-page: 3787 ident: bib12 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. – volume: 7 start-page: 11004 year: 2013 end-page: 11015 ident: bib32 article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes publication-title: ACS Nano – volume: 7 start-page: 1791 year: 2015 end-page: 1795 ident: bib33 article-title: Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage publication-title: Nanoscale – volume: 188 start-page: 103 year: 2016 end-page: 110 ident: bib61 article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries publication-title: Electrochim. Acta – volume: 6 start-page: 871 year: 2013 end-page: 878 ident: bib17 article-title: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors publication-title: Energy Environ. Sci. – volume: 2 start-page: 873 year: 2012 end-page: 877 ident: bib55 article-title: Hollow carbon nanospheres with superior rate capability for sodium-based batteries publication-title: Adv. Energy Mater – volume: 5 start-page: 7950 year: 2012 end-page: 7955 ident: bib29 article-title: Lithium storage in nitrogen-rich mesoporous carbon materials publication-title: Energy Environ. Sci. – volume: 176 start-page: 533 year: 2015 end-page: 541 ident: bib42 article-title: Peanut shell dervied hard carbon as ultralong cycling anodes for lithium and sodium batteries publication-title: Electrochim. Acta – volume: 5 start-page: 4033 year: 2014 end-page: 4042 ident: bib10 article-title: Expanded graphite as superior anode for sodium-ion batteries publication-title: Nat. Commun. – volume: 1 start-page: 5269 year: 2013 end-page: 5273 ident: bib47 article-title: Rice husk-derived carbon anodes for lithium ion batteries publication-title: J. Mater. Chem. A – volume: 23 start-page: 947 year: 2013 end-page: 958 ident: bib5 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater – volume: 2 start-page: 9684 year: 2014 end-page: 9690 ident: bib19 article-title: Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries publication-title: J. Mater. Chem. A – volume: 7 start-page: 27124 year: 2015 end-page: 27130 ident: bib28 article-title: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 6534 year: 2015 end-page: 6541 ident: bib20 article-title: Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries publication-title: J. Mater. Chem. A – volume: 350 start-page: 1508 year: 2015 end-page: 1513 ident: bib65 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science – volume: 6 start-page: 56 year: 2013 end-page: 60 ident: bib26 article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries publication-title: ChemSusChem – volume: 2 start-page: 12733 year: 2014 end-page: 12738 ident: bib57 article-title: Biomass derived hard carbon used as a high performance anode material for sodium ion batteries publication-title: J. Mater. Chem. A – volume: 54 start-page: 3431 year: 2015 end-page: 3448 ident: bib7 article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 50950 year: 2014 end-page: 50954 ident: bib62 article-title: Recycling chicken eggshell membranes for high-capacity sodium battery anodes publication-title: RSC Adv. – volume: 31 start-page: 319 year: 1977 end-page: 329 ident: bib2 article-title: Graphite intercalation compounds as cathode materials publication-title: Mater. Sci. Eng. – volume: 270 start-page: 590 year: 1995 end-page: 593 ident: bib8 article-title: Mechanisms for lithium insertion in carbonaceous materials publication-title: Science – volume: 3 start-page: 20560 year: 2015 end-page: 20566 ident: bib54 article-title: Facile synthesis of high performance hard carbon anode materials for sodium ion batteries publication-title: J. Mater. Chem. A – volume: 84 start-page: 399 year: 2015 end-page: 408 ident: bib36 article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries publication-title: Carbon – volume: 4 start-page: 1301584 year: 2014 ident: bib15 article-title: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries publication-title: Adv. Energy Mater – volume: 8 start-page: 941 year: 2015 end-page: 955 ident: bib38 article-title: Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors publication-title: Energy Environ. Sci. – volume: 44 start-page: 250 year: 2015 end-page: 290 ident: bib31 article-title: Sustainable carbon materials publication-title: Chem. Soc. Rev. – volume: 190 start-page: 337 year: 2016 end-page: 345 ident: bib46 article-title: Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell publication-title: Electrochimica Acta – volume: 3 start-page: 13786 year: 2015 end-page: 13793 ident: bib53 article-title: Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries publication-title: J. Mater. Chem. A – volume: 5 start-page: 5884 year: 2012 end-page: 5901 ident: bib4 article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems publication-title: Energy Environ. Sci. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 ident: bib6 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. – volume: 3 start-page: 6742 year: 2015 end-page: 6746 ident: bib41 article-title: Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries publication-title: J. Mater. Chem. A – volume: 28 start-page: 1172 year: 1988 end-page: 1175 ident: bib9 article-title: Electrochemical intercalation of sodium in graphite publication-title: Solid State Ionics – volume: 3 start-page: 292 year: 2016 end-page: 298 ident: bib63 article-title: Apple-biowaste-derived hard carbon as a powerful anode material for Na-Ion batteries publication-title: ChemElectroChem – volume: 18 start-page: 2078 year: 2016 end-page: 2088 ident: bib43 article-title: Interconnected highly graphitic carbon nanosheets derived fromwheat stalk as high performance anode materials for lithium ion batteries publication-title: Green Chem. – volume: 6 start-page: 2839 year: 2013 end-page: 2855 ident: bib18 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ. Sci. – volume: 18 start-page: 2106 year: 2016 end-page: 2114 ident: bib34 article-title: Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes publication-title: Green Chem. – volume: 147 start-page: 1271 year: 2000 end-page: 1273 ident: bib58 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. – volume: 9 start-page: 2556 year: 2015 end-page: 2564 ident: bib22 article-title: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors publication-title: ACS Nano – volume: 18 start-page: 2078 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib43 article-title: Interconnected highly graphitic carbon nanosheets derived fromwheat stalk as high performance anode materials for lithium ion batteries publication-title: Green Chem. doi: 10.1039/C5GC02122G – volume: 108 start-page: 311 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib44 article-title: Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.07.026 – volume: 7 start-page: 1791 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib33 article-title: Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage publication-title: Nanoscale doi: 10.1039/C4NR05878J – volume: 84 start-page: 399 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib36 article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2014.12.001 – volume: 11 start-page: 130 year: 2009 ident: 10.1016/j.jpowsour.2016.08.096_bib48 article-title: Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.10.041 – volume: 8 start-page: 7115 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib21 article-title: High-density sodium and lithium ion battery anodes from banana peels publication-title: ACS Nano doi: 10.1021/nn502045y – volume: 22 start-page: 813 year: 2010 ident: 10.1016/j.jpowsour.2016.08.096_bib30 article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass publication-title: Adv. Mater doi: 10.1002/adma.200902812 – volume: 55 start-page: 486 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib14 article-title: Recent development on anodes for Na-Ion batteries publication-title: Isr. J. Chem. doi: 10.1002/ijch.201400118 – volume: 3 start-page: 13786 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib53 article-title: Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02873F – volume: 17 start-page: 1668 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib52 article-title: Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage publication-title: Green Chem. doi: 10.1039/C4GC02185A – volume: 31 start-page: 319 year: 1977 ident: 10.1016/j.jpowsour.2016.08.096_bib2 article-title: Graphite intercalation compounds as cathode materials publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(77)90052-0 – volume: 7 start-page: 11004 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib32 article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes publication-title: ACS Nano doi: 10.1021/nn404640c – volume: 3 start-page: 71 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib60 article-title: Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05451B – volume: 54 start-page: 3431 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib7 article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410376 – volume: 6 start-page: 56 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib26 article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201200680 – volume: 176 start-page: 533 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib42 article-title: Peanut shell dervied hard carbon as ultralong cycling anodes for lithium and sodium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.059 – volume: 114 start-page: 11636 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib6 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500192f – volume: 196 start-page: 309 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib35 article-title: Honey: chemical composition, stability and authenticity publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.09.051 – volume: 49 start-page: 12543 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib64 article-title: Trash to treasure: from harmful algal blooms to high-performance electrodes for sodium-ion batteries publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03882 – volume: 28 start-page: 1172 year: 1988 ident: 10.1016/j.jpowsour.2016.08.096_bib9 article-title: Electrochemical intercalation of sodium in graphite publication-title: Solid State Ionics doi: 10.1016/0167-2738(88)90351-7 – volume: 5 start-page: 5463 year: 2011 ident: 10.1016/j.jpowsour.2016.08.096_bib23 article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn2006249 – volume: 7 start-page: 3574 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib16 article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01075B – volume: 12 start-page: 3783 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib12 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 5 start-page: 7950 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib29 article-title: Lithium storage in nitrogen-rich mesoporous carbon materials publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21817h – volume: 93 start-page: 143 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib25 article-title: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2015.04.091 – volume: 3 start-page: 20560 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib54 article-title: Facile synthesis of high performance hard carbon anode materials for sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05118E – volume: 270 start-page: 590 year: 1995 ident: 10.1016/j.jpowsour.2016.08.096_bib8 article-title: Mechanisms for lithium insertion in carbonaceous materials publication-title: Science doi: 10.1126/science.270.5236.590 – volume: 190 start-page: 337 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib46 article-title: Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2016.01.006 – volume: 6 start-page: 2839 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib18 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41444b – volume: 2 start-page: 9684 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib19 article-title: Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00501E – volume: 5 start-page: 4033 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib10 article-title: Expanded graphite as superior anode for sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms5033 – volume: 22 start-page: 8911 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib27 article-title: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study publication-title: J. Mater. Chem. doi: 10.1039/c2jm00166g – volume: 18 start-page: 2106 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib34 article-title: Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes publication-title: Green Chem. doi: 10.1039/C5GC02397A – volume: 55 start-page: 328 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib56 article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance publication-title: Carbon doi: 10.1016/j.carbon.2012.12.072 – volume: 147 start-page: 1271 year: 2000 ident: 10.1016/j.jpowsour.2016.08.096_bib58 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 194 start-page: 10 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib45 article-title: Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.083 – volume: 3 start-page: 292 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib63 article-title: Apple-biowaste-derived hard carbon as a powerful anode material for Na-Ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201500437 – volume: 23 start-page: 947 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib5 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201200691 – volume: 9 start-page: 2556 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib22 article-title: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors publication-title: ACS Nano doi: 10.1021/nn506394r – volume: 2 start-page: 1500195 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib24 article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500195 – volume: 3 start-page: 6742 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib41 article-title: Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00050E – volume: 192 start-page: 1126 year: 1976 ident: 10.1016/j.jpowsour.2016.08.096_bib1 article-title: Electrical energy storage and intercalation chemistry publication-title: Science doi: 10.1126/science.192.4244.1126 – volume: 4 start-page: 1301584 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib15 article-title: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries publication-title: Adv. Energy Mater doi: 10.1002/aenm.201301584 – volume: 1 start-page: 5269 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib47 article-title: Rice husk-derived carbon anodes for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10650k – volume: 2 start-page: 873 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib55 article-title: Hollow carbon nanospheres with superior rate capability for sodium-based batteries publication-title: Adv. Energy Mater doi: 10.1002/aenm.201100691 – volume: 7 start-page: 27124 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib28 article-title: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06898 – volume: 6 start-page: 871 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib17 article-title: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23599d – volume: 17 start-page: 1873 year: 2007 ident: 10.1016/j.jpowsour.2016.08.096_bib13 article-title: Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability publication-title: Adv. Funct. Mater doi: 10.1002/adfm.200601152 – volume: 44 start-page: 250 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib31 article-title: Sustainable carbon materials publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00232F – volume: 157 start-page: A791 year: 2010 ident: 10.1016/j.jpowsour.2016.08.096_bib51 article-title: Improving the performance of biomass-derived carbons in Li-Ion batteries by controlling the lithium insertion process publication-title: J. Electrochem. Soc. doi: 10.1149/1.3425728 – volume: 148 start-page: A803 year: 2001 ident: 10.1016/j.jpowsour.2016.08.096_bib11 article-title: The mechanisms of lithium and sodium insertion in carbon materials publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379565 – volume: 3 start-page: 6534 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib20 article-title: Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06614F – volume: 8 start-page: 941 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib38 article-title: Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02986K – volume: 350 start-page: 1508 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib65 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science doi: 10.1126/science.aab3798 – volume: 34 start-page: 193 year: 1996 ident: 10.1016/j.jpowsour.2016.08.096_bib39 article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins publication-title: Carbon doi: 10.1016/0008-6223(96)00177-7 – volume: 21 start-page: 3136 year: 2009 ident: 10.1016/j.jpowsour.2016.08.096_bib40 article-title: Li storage properties of disordered graphene nanosheets publication-title: Chem. Mater doi: 10.1021/cm900395k – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.jpowsour.2016.08.096_bib3 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 5 start-page: 5884 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib4 article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 100 start-page: 181 year: 2013 ident: 10.1016/j.jpowsour.2016.08.096_bib50 article-title: A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2012.12.016 – volume: 188 start-page: 103 year: 2016 ident: 10.1016/j.jpowsour.2016.08.096_bib61 article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.002 – volume: 4 start-page: 50950 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib62 article-title: Recycling chicken eggshell membranes for high-capacity sodium battery anodes publication-title: RSC Adv. doi: 10.1039/C4RA07995G – volume: 2 start-page: 12733 year: 2014 ident: 10.1016/j.jpowsour.2016.08.096_bib57 article-title: Biomass derived hard carbon used as a high performance anode material for sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02068E – volume: 15 start-page: 5888 year: 2015 ident: 10.1016/j.jpowsour.2016.08.096_bib59 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 55 start-page: 1696 year: 2010 ident: 10.1016/j.jpowsour.2016.08.096_bib49 article-title: Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.10.051 – volume: 24 start-page: 2047 year: 2012 ident: 10.1016/j.jpowsour.2016.08.096_bib37 article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability publication-title: Adv. Mater doi: 10.1002/adma.201104634 |
SSID | ssj0001170 |
Score | 2.5144622 |
Snippet | Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 20 |
SubjectTerms | Anode Honey Lithium ion battery Mesoporous carbon Nitrogen-doped Sodium ion battery |
Title | Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey |
URI | https://dx.doi.org/10.1016/j.jpowsour.2016.08.096 |
Volume | 335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-Sha0ggcYJHhIroi6VFYov8igiCJIKgiqW_vXchaalUiaFbHr4oOp_vPtvn7wi577q-ZEZyS_sdbkG81laXSwByLJAGAYMstgteR_5w7D1N2KRG-tVZGEyrLH3_1qcX3rp8YpfatLM4tt8cF4wN0DYgCohhDBk_PS9AK299_qR5YGWVYicBZkvYeueU8Kw1y9IPXCTHFC-_oPJE8v6_AtRO0BmckOMSLdLe9odOSc0kZ-Roh0PwnIiXOJ_G6wUViaarVOMlZjyCn6BxQpGOeL6hBcOm0XRhVikgbpjuUxjLyxTMx9JpBm-UWEqwQArtwAFqiudO6DRNzOaCjAcP7_2hVdZNsBSE49xiouMLt4N5gkqxyO-KwJPC-KbtygimZ0IZqXF7DDqDm7aKgsCRbTdg2DiKPPeS1BP4_hWhRgjkPAMMIiH0c8VZxL1IOEI5ONZ1g7BKWaEqScWxtsU8rLLHZmGl5BCVHGLRS-43iP0tl21pNfZK8Kovwl8GEoLv3yN7_Q_ZG3KId5jB0ma3pJ4v1-YOcEgum4WhNclB7_F5OPoCQ6jgxA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDLYYHLYdpj019sxh145HSUuO0zQE43EZSNyqvCqKoEXANO3fzy4tYtIkDrtVTVxVjmN_SZzPAE9N11PcKuEYry4cjNfGaQqFQI77yhJgUOlxQX_gtUeN9zEfF-A1vwtDaZWZ79_49NRbZ28qmTYriyiqfFRdNDZE24goMIZx9wBKxE7Fi1B66XTbg61DpuIq6WECLphIYOei8PR5uki-aJ-csry8lM2T-Pv_ilE7cad1CicZYGQvm386g4KNz-F4h0bwAmQvWk-izzmTsWGrxNAjJT2iq2BRzIiRePbNUpJNa9jcrhIE3bjiZzidlwlakGOSBbZouVRohAz7oQ80jK6esEkS2-9LGLXehq9tJyud4GiMyGuHy7on3TqlCmrNQ68p_YaS1rM1V4W4QpPaKkMnZDgewtZ06PtVVXN9Tp3DsOFeQTHG718Ds1IS7RnCEIXRX2jBQ9EIZVXqKk13UwaeKyvQGa84lbeYBXkC2TTIlRyQkgOqeym8MlS2cosNs8ZeCZGPRfDLRgJ0_3tkb_4h-wiH7WG_F_Q6g-4tHFELJbTU-B0U18tPe4-wZK0eMrP7AfX943U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+and+sodium+storage+in+highly+ordered+mesoporous+nitrogen-doped+carbons+derived+from+honey&rft.jtitle=Journal+of+power+sources&rft.au=Zhang%2C+Yongzhi&rft.au=Chen%2C+Li&rft.au=Meng%2C+Yan&rft.au=Xie%2C+Jun&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=335&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jpowsour.2016.08.096&rft.externalDocID=S0378775316311053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |