Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey

Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was emp...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 335; pp. 20 - 30
Main Authors Zhang, Yongzhi, Chen, Li, Meng, Yan, Xie, Jun, Guo, Yong, Xiao, Dan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMCs). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387–0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38–4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g−1 after 10 cycles at 100 mA g−1 and excellent rate capability and cycling stability of 722 mA h g−1 after 200 cycles at 1 A g−1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g−1 and stable reversible capacity of 394 mA h g−1 at 100 mA g−1. A SBA-15 template process was used to prepare honey derived mesoporous nitrogen-doped carbons (HMNCs), which possess narrow pore size distributions centering at around 4 nm and satisfactory N contents, exhibiting excellent lithium and sodium anodic performances. [Display omitted] •Honey is employed as a nitrogen-containing carbon precursor.•A novel highly ordered nitrogen-doped mesoporous carbon is obtained.•The obtained HMNCs exhibit excellent lithium and sodium anodic performance.•The mechanism of Li+/Na+ storage in HMNCs is investigated.
AbstractList Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMCs). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387–0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38–4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g−1 after 10 cycles at 100 mA g−1 and excellent rate capability and cycling stability of 722 mA h g−1 after 200 cycles at 1 A g−1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g−1 and stable reversible capacity of 394 mA h g−1 at 100 mA g−1. A SBA-15 template process was used to prepare honey derived mesoporous nitrogen-doped carbons (HMNCs), which possess narrow pore size distributions centering at around 4 nm and satisfactory N contents, exhibiting excellent lithium and sodium anodic performances. [Display omitted] •Honey is employed as a nitrogen-containing carbon precursor.•A novel highly ordered nitrogen-doped mesoporous carbon is obtained.•The obtained HMNCs exhibit excellent lithium and sodium anodic performance.•The mechanism of Li+/Na+ storage in HMNCs is investigated.
Author Xie, Jun
Meng, Yan
Zhang, Yongzhi
Chen, Li
Xiao, Dan
Guo, Yong
Author_xml – sequence: 1
  givenname: Yongzhi
  surname: Zhang
  fullname: Zhang, Yongzhi
  organization: Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
– sequence: 2
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: Analytical & Testing Center, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
– sequence: 3
  givenname: Yan
  surname: Meng
  fullname: Meng, Yan
  organization: College of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
– sequence: 4
  givenname: Jun
  surname: Xie
  fullname: Xie, Jun
  organization: College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
– sequence: 5
  givenname: Yong
  surname: Guo
  fullname: Guo, Yong
  email: guoy@scu.edu.cn
  organization: College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
– sequence: 6
  givenname: Dan
  surname: Xiao
  fullname: Xiao, Dan
  email: xiaodan@scu.edu.cn
  organization: Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
BookMark eNqFkE1OwzAQhS0EEm3hCsgXSLCTJk4kFqCKP6kSG1hbjj1uHDV2ZbtFvT2OChs2Xc2M5n1PM2-OLq2zgNAdJTkltL4f8mHnvoPb-7xIc06anLT1BZrRhpVZwarqEs1IyZqMsaq8RvMQBkIIpYzMkFib2Jv9iIVVODg1tSE6LzaAjcW92fTbI3ZegQeFRwhu57zbB2xN9G4DNlNulzZS-M7ZgJPOHNKsvRtxnw493qArLbYBbn_rAn29PH-u3rL1x-v76mmdySWtYlaJohZlwZqGSVnpuhFs2QmogZadbikTEjpF65YAbVugUjNGOlqyahJrvSwX6OHkK70LwYPm0kQRjbPRC7PllPApLj7wv7j4FBcnDU9xJbz-h--8GYU_ngcfTyCk5w4GPA_SgJWgjAcZuXLmnMUPDxaPSw
CitedBy_id crossref_primary_10_1039_D2DT00924B
crossref_primary_10_1016_j_apsusc_2023_156994
crossref_primary_10_1016_j_jcou_2020_01_020
crossref_primary_10_1016_j_diamond_2024_111676
crossref_primary_10_1002_celc_201800300
crossref_primary_10_1002_smll_201804600
crossref_primary_10_1016_j_electacta_2017_08_131
crossref_primary_10_1039_C7TA01394A
crossref_primary_10_1002_celc_201700259
crossref_primary_10_1021_acsomega_8b02954
crossref_primary_10_1002_asia_201800132
crossref_primary_10_1021_acsomega_2c06054
crossref_primary_10_1007_s11581_017_2173_z
crossref_primary_10_1016_j_cartre_2024_100428
crossref_primary_10_1016_j_jtice_2017_10_036
crossref_primary_10_1002_er_8124
crossref_primary_10_1007_s12274_021_3506_9
crossref_primary_10_1016_j_jechem_2024_11_049
crossref_primary_10_1002_aenm_201702403
crossref_primary_10_1002_cey2_196
crossref_primary_10_1039_D0CC02840A
crossref_primary_10_1021_acsanm_1c02621
crossref_primary_10_1021_acs_energyfuels_2c01309
crossref_primary_10_1002_adsu_201700081
crossref_primary_10_1016_j_jcis_2019_05_021
crossref_primary_10_1002_adfm_202208349
crossref_primary_10_1039_C7SE00169J
crossref_primary_10_1016_j_jpowsour_2023_233329
crossref_primary_10_3390_ma11091568
crossref_primary_10_1007_s10853_018_2472_4
crossref_primary_10_1007_s10853_018_2295_3
crossref_primary_10_1039_D0TA05094F
crossref_primary_10_1016_j_jcis_2021_08_005
crossref_primary_10_1016_j_powtec_2018_11_100
crossref_primary_10_1016_j_rinma_2022_100297
crossref_primary_10_1016_j_nxmate_2024_100450
crossref_primary_10_1016_j_jmst_2021_06_016
crossref_primary_10_1016_j_apsusc_2019_03_143
crossref_primary_10_1016_j_jallcom_2019_03_370
crossref_primary_10_1002_slct_201900818
crossref_primary_10_1016_j_matchemphys_2018_06_076
crossref_primary_10_1016_j_pmatsci_2020_100770
crossref_primary_10_1016_j_electacta_2019_03_001
crossref_primary_10_1016_j_mseb_2022_116064
crossref_primary_10_1039_C8QI01057A
crossref_primary_10_1002_celc_202101182
crossref_primary_10_1007_s00604_018_3010_4
crossref_primary_10_1021_acsaem_1c00521
crossref_primary_10_1021_acs_energyfuels_1c01226
crossref_primary_10_1016_j_electacta_2019_134973
crossref_primary_10_1080_10667857_2018_1545392
crossref_primary_10_1039_C7CS00787F
crossref_primary_10_1016_j_electacta_2018_02_147
crossref_primary_10_1016_j_diamond_2022_109064
crossref_primary_10_1016_j_jelechem_2023_117525
crossref_primary_10_1016_j_jpowsour_2020_228098
crossref_primary_10_1039_D0RA08993A
crossref_primary_10_1002_adfm_202201584
crossref_primary_10_1007_s41918_022_00178_y
crossref_primary_10_1016_j_powtec_2020_05_060
crossref_primary_10_1142_S1793292019501042
crossref_primary_10_1007_s11708_017_0491_5
crossref_primary_10_1016_j_apsusc_2018_04_251
crossref_primary_10_1002_ente_202300493
crossref_primary_10_1038_s41467_024_45460_3
crossref_primary_10_1039_D4GC06509C
crossref_primary_10_1016_j_ijhydene_2017_12_151
crossref_primary_10_1016_j_jpowsour_2017_05_066
crossref_primary_10_1039_C7TA01958K
crossref_primary_10_1016_j_rser_2024_114304
crossref_primary_10_1002_elsa_202100010
crossref_primary_10_1007_s11581_019_03146_7
crossref_primary_10_1007_s12274_023_5540_2
crossref_primary_10_1002_ente_201700674
crossref_primary_10_1002_slct_201801330
crossref_primary_10_1016_j_indcrop_2023_116628
crossref_primary_10_1016_j_chemphys_2020_111074
crossref_primary_10_1039_C9RA01749F
crossref_primary_10_1002_slct_201702126
crossref_primary_10_1002_cjce_24921
crossref_primary_10_1016_j_jcis_2020_03_092
crossref_primary_10_1016_j_cplett_2019_137028
crossref_primary_10_1016_j_jpowsour_2021_229459
crossref_primary_10_3390_nano12010022
crossref_primary_10_1016_j_vacuum_2021_110535
crossref_primary_10_1039_C9NJ01397K
crossref_primary_10_3390_coatings13111960
crossref_primary_10_3390_nano10071398
crossref_primary_10_1021_acsami_1c14334
crossref_primary_10_1021_acsami_7b10882
crossref_primary_10_3390_pr12102229
crossref_primary_10_1016_j_jpowsour_2022_231993
crossref_primary_10_20964_2018_03_33
crossref_primary_10_1021_acsomega_4c00797
crossref_primary_10_1016_j_apsusc_2017_02_213
Cites_doi 10.1039/C5GC02122G
10.1016/j.matlet.2013.07.026
10.1039/C4NR05878J
10.1016/j.carbon.2014.12.001
10.1016/j.elecom.2008.10.041
10.1021/nn502045y
10.1002/adma.200902812
10.1002/ijch.201400118
10.1039/C5TA02873F
10.1039/C4GC02185A
10.1016/0025-5416(77)90052-0
10.1021/nn404640c
10.1039/C4TA05451B
10.1002/anie.201410376
10.1002/cssc.201200680
10.1016/j.electacta.2015.07.059
10.1021/cr500192f
10.1016/j.foodchem.2015.09.051
10.1021/acs.est.5b03882
10.1016/0167-2738(88)90351-7
10.1021/nn2006249
10.1039/C4EE01075B
10.1021/nl3016957
10.1039/c2ee21817h
10.1016/j.carbon.2015.04.091
10.1039/C5TA05118E
10.1126/science.270.5236.590
10.1016/j.electacta.2016.01.006
10.1039/c3ee41444b
10.1039/C4TA00501E
10.1038/ncomms5033
10.1039/c2jm00166g
10.1039/C5GC02397A
10.1016/j.carbon.2012.12.072
10.1149/1.1393348
10.1016/j.electacta.2016.02.083
10.1002/celc.201500437
10.1002/adfm.201200691
10.1021/nn506394r
10.1002/advs.201500195
10.1039/C5TA00050E
10.1126/science.192.4244.1126
10.1002/aenm.201301584
10.1039/c3ta10650k
10.1002/aenm.201100691
10.1021/acsami.5b06898
10.1039/c2ee23599d
10.1002/adfm.200601152
10.1039/C4CS00232F
10.1149/1.3425728
10.1149/1.1379565
10.1039/C4TA06614F
10.1039/C4EE02986K
10.1126/science.aab3798
10.1016/0008-6223(96)00177-7
10.1021/cm900395k
10.1038/451652a
10.1039/c2ee02781j
10.1016/j.jaap.2012.12.016
10.1016/j.electacta.2015.12.002
10.1039/C4RA07995G
10.1039/C4TA02068E
10.1021/acs.nanolett.5b01969
10.1016/j.electacta.2009.10.051
10.1002/adma.201104634
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2016.08.096
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 30
ExternalDocumentID 10_1016_j_jpowsour_2016_08_096
S0378775316311053
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c415t-5a26a327887cc5f68a74bae6e13bf917acebd1690e199e1cf770b1375c5f6ff43
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Apr 24 23:00:03 EDT 2025
Tue Jul 01 01:39:56 EDT 2025
Fri Feb 23 02:27:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Honey
Lithium ion battery
Sodium ion battery
Nitrogen-doped
Anode
Mesoporous carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-5a26a327887cc5f68a74bae6e13bf917acebd1690e199e1cf770b1375c5f6ff43
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2016_08_096
crossref_primary_10_1016_j_jpowsour_2016_08_096
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2016_08_096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hu, Wang, Wu, Yu, Antonietti, Titirici (bib30) 2010; 22
Li, Xu, Wu, Yu, Wang, Hu, Li, Chen, Huang (bib60) 2015; 3
Sun, Liu, Xu (bib54) 2015; 3
Wang, Xiao, Xing, Xu, Zhang (bib41) 2015; 3
Liu, Xue, Zheng, Dahn (bib39) 1996; 34
Whittingham (bib1) 1976; 192
Li, Xu, Tan, Wang, Holt, Stephenson, Olsen, Mitlin (bib17) 2013; 6
Bommier, Ji (bib14) 2015; 55
Pan, Wang, Zhao, Wu, Zhang, Wang, Jiao (bib40) 2009; 21
Qu, Zhang, Zhang, Ren, Lai, Liu, Li (bib36) 2015; 84
Wang, Qie, Yuan, Zhang, Hu, Huang (bib56) 2013; 55
Ding, Wang, Li, Cui, Karpuzov, Tan, Kohandehghan, Mitlin (bib38) 2015; 8
Lotfabad, Ding, Cui, Kohandehghan, Kalisvaart, Hazelton, Mitlin (bib21) 2014; 8
Palomares, Serras, Villaluenga, Hueso, Carretero-González, Rojo (bib4) 2012; 5
Cao, Xiao, Sushko, Wang, Schwenzer, Xiao, Nie, Saraf, Yang, Liu (bib12) 2012; 12
Lin, Chen, Liu, Yang, Bi, Xu, Huang (bib65) 2015; 350
Wen, He, Zhu, Han, Xu, Matsuda, Ishii, Cumings, Wang (bib10) 2014; 5
Liu, Jia, Sun, Cao, Chen, Zhu, Wu, Qiao, Xu (bib28) 2015; 7
Lv, Zhao, Wen, Xiang, Li, Wang, Liu, Tian (bib53) 2015; 3
Li, Liang, Hou, Zhu, Qian (bib62) 2014; 4
Zhang, Yao, Yang, Zhang, Xu (bib25) 2015; 93
Paraknowitsch, Thomas (bib18) 2013; 6
Mao, Duan, Xu, Zhang, Hu, Zhao, Wang, Chen, Yang (bib29) 2012; 5
Chen, Zhang, Lin, Yang, Meng, Guo, Li, Xiao (bib19) 2014; 2
Ou, Zhang, Chen, Zhao, Meng, Guo, Xiao (bib20) 2015; 3
Yan, Yin, Guo, Wan (bib15) 2014; 4
Hong, Qie, Zeng, Yi, Zhang, Wang, Yin, Wu, Fan, Zhang, Huang (bib57) 2014; 2
Armand, Tarascon (bib3) 2008; 451
Stevens, Dahn (bib11) 2001; 148
Hu, Adelhelm, Smarsly, Hore, Antonietti, Maier (bib13) 2007; 17
Zhu, Akiyama (bib34) 2016; 18
Liu, Luo, Qiao, Yoon, Mochida (bib49) 2010; 55
Ru, Bai, Xiang, Zhou, Chen, Zhao (bib45) 2016; 194
Tang, Fu, White, Yu, Titirici, Antonietti, Maier (bib55) 2012; 2
Kundu, Talaie, Duffort, Nazar (bib7) 2015; 54
Ma, Shao, Cao (bib27) 2012; 22
Bommier, Surta, Dolgos, Ji (bib59) 2015; 15
Stevens, Dahn (bib58) 2000; 147
Selvamani, Ravikumar, Suryanarayanan, Velayutham, Gopukumar (bib46) 2016; 190
Xu, Han, Ding, Nie, Pan, Dou, Li, Zhang (bib52) 2015; 17
Meng, Savage, Deng (bib64) 2015; 49
Wang, Wu, Meng, Ma, Huang, Wang, Zhang (bib26) 2013; 6
Wang, Yu, Shi, Mao, Chen, Liu (bib61) 2016; 188
Qie, Chen, Xiong, Hu, Zou, Hu, Huang (bib24) 2015; 2
Qie, Chen, Wang, Shao, Li, Yuan, Hu, Zhang, Huang (bib37) 2012; 24
Yabuuchi, Kubota, Dahbi, Komaba (bib6) 2014; 114
Arrebola, Caballero, Hernán, Morales, Olivares-Marín, Gómez-Serrano (bib51) 2010; 157
Sun, Wang, Feng, Qiao, Li, He (bib50) 2013; 100
Armand, Touzain (bib2) 1977; 31
Dahn, Zheng, Liu, Xue (bib8) 1995; 270
Dutta, Bhaumik, Wu (bib16) 2014; 7
Yun, Jin (bib44) 2013; 108
Wu, Ren, Xu, Li, Cheng (bib23) 2011; 5
Wang, Schnepp, Titirici (bib47) 2013; 1
Zhang, Wang, Li, Chen (bib48) 2009; 11
Chen, Yu, Liu, Fan, Zhao, Zhang, Qiu (bib33) 2015; 7
Slater, Kim, Lee, Johnson (bib5) 2013; 23
Ding, Wang, Li, Kohandehghan, Cui, Xu, Zahiri, Tan, Lotfabad, Olsen (bib32) 2013; 7
Wu, Buchholz, Vaalma, Giffin, Passerini (bib63) 2016; 3
Lv, Wen, Xiang, Zhao, Li, Wang, Liu, Tian (bib42) 2015; 176
da Silva, Gauche, Gonzaga, Costa, Fett (bib35) 2016; 196
Hou, Cao, Idrees, Ma (bib22) 2015; 9
Ge, Fouletier (bib9) 1988; 28
Zhou, Chen, Bai, Long, Liao, Ren, Yang (bib43) 2016; 18
Titirici, White, Brun, Budarin, Su, del Monte, Clark, MacLachlan (bib31) 2015; 44
Wang (10.1016/j.jpowsour.2016.08.096_bib61) 2016; 188
Paraknowitsch (10.1016/j.jpowsour.2016.08.096_bib18) 2013; 6
Sun (10.1016/j.jpowsour.2016.08.096_bib50) 2013; 100
Chen (10.1016/j.jpowsour.2016.08.096_bib19) 2014; 2
Ru (10.1016/j.jpowsour.2016.08.096_bib45) 2016; 194
Zhu (10.1016/j.jpowsour.2016.08.096_bib34) 2016; 18
Meng (10.1016/j.jpowsour.2016.08.096_bib64) 2015; 49
Qie (10.1016/j.jpowsour.2016.08.096_bib37) 2012; 24
Palomares (10.1016/j.jpowsour.2016.08.096_bib4) 2012; 5
Yabuuchi (10.1016/j.jpowsour.2016.08.096_bib6) 2014; 114
Whittingham (10.1016/j.jpowsour.2016.08.096_bib1) 1976; 192
Chen (10.1016/j.jpowsour.2016.08.096_bib33) 2015; 7
Stevens (10.1016/j.jpowsour.2016.08.096_bib11) 2001; 148
Lv (10.1016/j.jpowsour.2016.08.096_bib42) 2015; 176
Slater (10.1016/j.jpowsour.2016.08.096_bib5) 2013; 23
Xu (10.1016/j.jpowsour.2016.08.096_bib52) 2015; 17
Qie (10.1016/j.jpowsour.2016.08.096_bib24) 2015; 2
Kundu (10.1016/j.jpowsour.2016.08.096_bib7) 2015; 54
Wu (10.1016/j.jpowsour.2016.08.096_bib23) 2011; 5
Ge (10.1016/j.jpowsour.2016.08.096_bib9) 1988; 28
Wang (10.1016/j.jpowsour.2016.08.096_bib26) 2013; 6
Wang (10.1016/j.jpowsour.2016.08.096_bib41) 2015; 3
Stevens (10.1016/j.jpowsour.2016.08.096_bib58) 2000; 147
Arrebola (10.1016/j.jpowsour.2016.08.096_bib51) 2010; 157
Ma (10.1016/j.jpowsour.2016.08.096_bib27) 2012; 22
Armand (10.1016/j.jpowsour.2016.08.096_bib2) 1977; 31
Liu (10.1016/j.jpowsour.2016.08.096_bib49) 2010; 55
Mao (10.1016/j.jpowsour.2016.08.096_bib29) 2012; 5
Dutta (10.1016/j.jpowsour.2016.08.096_bib16) 2014; 7
Lv (10.1016/j.jpowsour.2016.08.096_bib53) 2015; 3
Hu (10.1016/j.jpowsour.2016.08.096_bib13) 2007; 17
Pan (10.1016/j.jpowsour.2016.08.096_bib40) 2009; 21
Dahn (10.1016/j.jpowsour.2016.08.096_bib8) 1995; 270
Ou (10.1016/j.jpowsour.2016.08.096_bib20) 2015; 3
Zhou (10.1016/j.jpowsour.2016.08.096_bib43) 2016; 18
Yan (10.1016/j.jpowsour.2016.08.096_bib15) 2014; 4
Wu (10.1016/j.jpowsour.2016.08.096_bib63) 2016; 3
Zhang (10.1016/j.jpowsour.2016.08.096_bib25) 2015; 93
da Silva (10.1016/j.jpowsour.2016.08.096_bib35) 2016; 196
Li (10.1016/j.jpowsour.2016.08.096_bib60) 2015; 3
Ding (10.1016/j.jpowsour.2016.08.096_bib32) 2013; 7
Cao (10.1016/j.jpowsour.2016.08.096_bib12) 2012; 12
Bommier (10.1016/j.jpowsour.2016.08.096_bib59) 2015; 15
Selvamani (10.1016/j.jpowsour.2016.08.096_bib46) 2016; 190
Hou (10.1016/j.jpowsour.2016.08.096_bib22) 2015; 9
Bommier (10.1016/j.jpowsour.2016.08.096_bib14) 2015; 55
Wang (10.1016/j.jpowsour.2016.08.096_bib47) 2013; 1
Sun (10.1016/j.jpowsour.2016.08.096_bib54) 2015; 3
Lotfabad (10.1016/j.jpowsour.2016.08.096_bib21) 2014; 8
Hong (10.1016/j.jpowsour.2016.08.096_bib57) 2014; 2
Liu (10.1016/j.jpowsour.2016.08.096_bib28) 2015; 7
Li (10.1016/j.jpowsour.2016.08.096_bib17) 2013; 6
Tang (10.1016/j.jpowsour.2016.08.096_bib55) 2012; 2
Titirici (10.1016/j.jpowsour.2016.08.096_bib31) 2015; 44
Zhang (10.1016/j.jpowsour.2016.08.096_bib48) 2009; 11
Ding (10.1016/j.jpowsour.2016.08.096_bib38) 2015; 8
Yun (10.1016/j.jpowsour.2016.08.096_bib44) 2013; 108
Qu (10.1016/j.jpowsour.2016.08.096_bib36) 2015; 84
Lin (10.1016/j.jpowsour.2016.08.096_bib65) 2015; 350
Armand (10.1016/j.jpowsour.2016.08.096_bib3) 2008; 451
Liu (10.1016/j.jpowsour.2016.08.096_bib39) 1996; 34
Li (10.1016/j.jpowsour.2016.08.096_bib62) 2014; 4
Wen (10.1016/j.jpowsour.2016.08.096_bib10) 2014; 5
Hu (10.1016/j.jpowsour.2016.08.096_bib30) 2010; 22
Wang (10.1016/j.jpowsour.2016.08.096_bib56) 2013; 55
References_xml – volume: 3
  start-page: 71
  year: 2015
  end-page: 77
  ident: bib60
  article-title: Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 194
  start-page: 10
  year: 2016
  end-page: 16
  ident: bib45
  article-title: Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 148
  start-page: A803
  year: 2001
  end-page: A811
  ident: bib11
  article-title: The mechanisms of lithium and sodium insertion in carbon materials
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 7115
  year: 2014
  end-page: 7129
  ident: bib21
  article-title: High-density sodium and lithium ion battery anodes from banana peels
  publication-title: ACS Nano
– volume: 17
  start-page: 1873
  year: 2007
  end-page: 1878
  ident: bib13
  article-title: Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability
  publication-title: Adv. Funct. Mater
– volume: 2
  start-page: 1500195
  year: 2015
  ident: bib24
  article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries
  publication-title: Adv. Sci.
– volume: 17
  start-page: 1668
  year: 2015
  end-page: 1674
  ident: bib52
  article-title: Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage
  publication-title: Green Chem.
– volume: 55
  start-page: 486
  year: 2015
  end-page: 507
  ident: bib14
  article-title: Recent development on anodes for Na-Ion batteries
  publication-title: Isr. J. Chem.
– volume: 7
  start-page: 3574
  year: 2014
  end-page: 3592
  ident: bib16
  article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
  publication-title: Energy Environ. Sci.
– volume: 93
  start-page: 143
  year: 2015
  end-page: 150
  ident: bib25
  article-title: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries
  publication-title: Carbon
– volume: 11
  start-page: 130
  year: 2009
  end-page: 133
  ident: bib48
  article-title: Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance
  publication-title: Electrochem. Commun.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: bib3
  article-title: Building better batteries
  publication-title: Nature
– volume: 100
  start-page: 181
  year: 2013
  end-page: 185
  ident: bib50
  article-title: A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 5
  start-page: 5463
  year: 2011
  end-page: 5471
  ident: bib23
  article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries
  publication-title: ACS Nano
– volume: 196
  start-page: 309
  year: 2016
  end-page: 323
  ident: bib35
  article-title: Honey: chemical composition, stability and authenticity
  publication-title: Food Chem.
– volume: 22
  start-page: 813
  year: 2010
  end-page: 828
  ident: bib30
  article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass
  publication-title: Adv. Mater
– volume: 55
  start-page: 328
  year: 2013
  end-page: 334
  ident: bib56
  article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance
  publication-title: Carbon
– volume: 49
  start-page: 12543
  year: 2015
  end-page: 12550
  ident: bib64
  article-title: Trash to treasure: from harmful algal blooms to high-performance electrodes for sodium-ion batteries
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 1696
  year: 2010
  end-page: 1700
  ident: bib49
  article-title: Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries
  publication-title: Electrochim. Acta
– volume: 108
  start-page: 311
  year: 2013
  end-page: 315
  ident: bib44
  article-title: Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries
  publication-title: Mater. Lett.
– volume: 157
  start-page: A791
  year: 2010
  end-page: A797
  ident: bib51
  article-title: Improving the performance of biomass-derived carbons in Li-Ion batteries by controlling the lithium insertion process
  publication-title: J. Electrochem. Soc.
– volume: 34
  start-page: 193
  year: 1996
  end-page: 200
  ident: bib39
  article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
  publication-title: Carbon
– volume: 22
  start-page: 8911
  year: 2012
  end-page: 8915
  ident: bib27
  article-title: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 2047
  year: 2012
  end-page: 2050
  ident: bib37
  article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
  publication-title: Adv. Mater
– volume: 192
  start-page: 1126
  year: 1976
  end-page: 1127
  ident: bib1
  article-title: Electrical energy storage and intercalation chemistry
  publication-title: Science
– volume: 15
  start-page: 5888
  year: 2015
  end-page: 5892
  ident: bib59
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
– volume: 21
  start-page: 3136
  year: 2009
  end-page: 3142
  ident: bib40
  article-title: Li storage properties of disordered graphene nanosheets
  publication-title: Chem. Mater
– volume: 12
  start-page: 3783
  year: 2012
  end-page: 3787
  ident: bib12
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
– volume: 7
  start-page: 11004
  year: 2013
  end-page: 11015
  ident: bib32
  article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes
  publication-title: ACS Nano
– volume: 7
  start-page: 1791
  year: 2015
  end-page: 1795
  ident: bib33
  article-title: Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage
  publication-title: Nanoscale
– volume: 188
  start-page: 103
  year: 2016
  end-page: 110
  ident: bib61
  article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 871
  year: 2013
  end-page: 878
  ident: bib17
  article-title: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 873
  year: 2012
  end-page: 877
  ident: bib55
  article-title: Hollow carbon nanospheres with superior rate capability for sodium-based batteries
  publication-title: Adv. Energy Mater
– volume: 5
  start-page: 7950
  year: 2012
  end-page: 7955
  ident: bib29
  article-title: Lithium storage in nitrogen-rich mesoporous carbon materials
  publication-title: Energy Environ. Sci.
– volume: 176
  start-page: 533
  year: 2015
  end-page: 541
  ident: bib42
  article-title: Peanut shell dervied hard carbon as ultralong cycling anodes for lithium and sodium batteries
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 4033
  year: 2014
  end-page: 4042
  ident: bib10
  article-title: Expanded graphite as superior anode for sodium-ion batteries
  publication-title: Nat. Commun.
– volume: 1
  start-page: 5269
  year: 2013
  end-page: 5273
  ident: bib47
  article-title: Rice husk-derived carbon anodes for lithium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 947
  year: 2013
  end-page: 958
  ident: bib5
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater
– volume: 2
  start-page: 9684
  year: 2014
  end-page: 9690
  ident: bib19
  article-title: Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 27124
  year: 2015
  end-page: 27130
  ident: bib28
  article-title: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 6534
  year: 2015
  end-page: 6541
  ident: bib20
  article-title: Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 350
  start-page: 1508
  year: 2015
  end-page: 1513
  ident: bib65
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
– volume: 6
  start-page: 56
  year: 2013
  end-page: 60
  ident: bib26
  article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries
  publication-title: ChemSusChem
– volume: 2
  start-page: 12733
  year: 2014
  end-page: 12738
  ident: bib57
  article-title: Biomass derived hard carbon used as a high performance anode material for sodium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 3431
  year: 2015
  end-page: 3448
  ident: bib7
  article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 50950
  year: 2014
  end-page: 50954
  ident: bib62
  article-title: Recycling chicken eggshell membranes for high-capacity sodium battery anodes
  publication-title: RSC Adv.
– volume: 31
  start-page: 319
  year: 1977
  end-page: 329
  ident: bib2
  article-title: Graphite intercalation compounds as cathode materials
  publication-title: Mater. Sci. Eng.
– volume: 270
  start-page: 590
  year: 1995
  end-page: 593
  ident: bib8
  article-title: Mechanisms for lithium insertion in carbonaceous materials
  publication-title: Science
– volume: 3
  start-page: 20560
  year: 2015
  end-page: 20566
  ident: bib54
  article-title: Facile synthesis of high performance hard carbon anode materials for sodium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 84
  start-page: 399
  year: 2015
  end-page: 408
  ident: bib36
  article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries
  publication-title: Carbon
– volume: 4
  start-page: 1301584
  year: 2014
  ident: bib15
  article-title: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy Mater
– volume: 8
  start-page: 941
  year: 2015
  end-page: 955
  ident: bib38
  article-title: Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors
  publication-title: Energy Environ. Sci.
– volume: 44
  start-page: 250
  year: 2015
  end-page: 290
  ident: bib31
  article-title: Sustainable carbon materials
  publication-title: Chem. Soc. Rev.
– volume: 190
  start-page: 337
  year: 2016
  end-page: 345
  ident: bib46
  article-title: Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell
  publication-title: Electrochimica Acta
– volume: 3
  start-page: 13786
  year: 2015
  end-page: 13793
  ident: bib53
  article-title: Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 5884
  year: 2012
  end-page: 5901
  ident: bib4
  article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  ident: bib6
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
– volume: 3
  start-page: 6742
  year: 2015
  end-page: 6746
  ident: bib41
  article-title: Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 1172
  year: 1988
  end-page: 1175
  ident: bib9
  article-title: Electrochemical intercalation of sodium in graphite
  publication-title: Solid State Ionics
– volume: 3
  start-page: 292
  year: 2016
  end-page: 298
  ident: bib63
  article-title: Apple-biowaste-derived hard carbon as a powerful anode material for Na-Ion batteries
  publication-title: ChemElectroChem
– volume: 18
  start-page: 2078
  year: 2016
  end-page: 2088
  ident: bib43
  article-title: Interconnected highly graphitic carbon nanosheets derived fromwheat stalk as high performance anode materials for lithium ion batteries
  publication-title: Green Chem.
– volume: 6
  start-page: 2839
  year: 2013
  end-page: 2855
  ident: bib18
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 2106
  year: 2016
  end-page: 2114
  ident: bib34
  article-title: Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes
  publication-title: Green Chem.
– volume: 147
  start-page: 1271
  year: 2000
  end-page: 1273
  ident: bib58
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 2556
  year: 2015
  end-page: 2564
  ident: bib22
  article-title: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors
  publication-title: ACS Nano
– volume: 18
  start-page: 2078
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib43
  article-title: Interconnected highly graphitic carbon nanosheets derived fromwheat stalk as high performance anode materials for lithium ion batteries
  publication-title: Green Chem.
  doi: 10.1039/C5GC02122G
– volume: 108
  start-page: 311
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib44
  article-title: Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.07.026
– volume: 7
  start-page: 1791
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib33
  article-title: Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage
  publication-title: Nanoscale
  doi: 10.1039/C4NR05878J
– volume: 84
  start-page: 399
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib36
  article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.001
– volume: 11
  start-page: 130
  year: 2009
  ident: 10.1016/j.jpowsour.2016.08.096_bib48
  article-title: Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.10.041
– volume: 8
  start-page: 7115
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib21
  article-title: High-density sodium and lithium ion battery anodes from banana peels
  publication-title: ACS Nano
  doi: 10.1021/nn502045y
– volume: 22
  start-page: 813
  year: 2010
  ident: 10.1016/j.jpowsour.2016.08.096_bib30
  article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass
  publication-title: Adv. Mater
  doi: 10.1002/adma.200902812
– volume: 55
  start-page: 486
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib14
  article-title: Recent development on anodes for Na-Ion batteries
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201400118
– volume: 3
  start-page: 13786
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib53
  article-title: Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02873F
– volume: 17
  start-page: 1668
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib52
  article-title: Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage
  publication-title: Green Chem.
  doi: 10.1039/C4GC02185A
– volume: 31
  start-page: 319
  year: 1977
  ident: 10.1016/j.jpowsour.2016.08.096_bib2
  article-title: Graphite intercalation compounds as cathode materials
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(77)90052-0
– volume: 7
  start-page: 11004
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib32
  article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn404640c
– volume: 3
  start-page: 71
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib60
  article-title: Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05451B
– volume: 54
  start-page: 3431
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib7
  article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410376
– volume: 6
  start-page: 56
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib26
  article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200680
– volume: 176
  start-page: 533
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib42
  article-title: Peanut shell dervied hard carbon as ultralong cycling anodes for lithium and sodium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.059
– volume: 114
  start-page: 11636
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib6
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 196
  start-page: 309
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib35
  article-title: Honey: chemical composition, stability and authenticity
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.09.051
– volume: 49
  start-page: 12543
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib64
  article-title: Trash to treasure: from harmful algal blooms to high-performance electrodes for sodium-ion batteries
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03882
– volume: 28
  start-page: 1172
  year: 1988
  ident: 10.1016/j.jpowsour.2016.08.096_bib9
  article-title: Electrochemical intercalation of sodium in graphite
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(88)90351-7
– volume: 5
  start-page: 5463
  year: 2011
  ident: 10.1016/j.jpowsour.2016.08.096_bib23
  article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn2006249
– volume: 7
  start-page: 3574
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib16
  article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01075B
– volume: 12
  start-page: 3783
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib12
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 5
  start-page: 7950
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib29
  article-title: Lithium storage in nitrogen-rich mesoporous carbon materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21817h
– volume: 93
  start-page: 143
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib25
  article-title: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.04.091
– volume: 3
  start-page: 20560
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib54
  article-title: Facile synthesis of high performance hard carbon anode materials for sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05118E
– volume: 270
  start-page: 590
  year: 1995
  ident: 10.1016/j.jpowsour.2016.08.096_bib8
  article-title: Mechanisms for lithium insertion in carbonaceous materials
  publication-title: Science
  doi: 10.1126/science.270.5236.590
– volume: 190
  start-page: 337
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib46
  article-title: Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2016.01.006
– volume: 6
  start-page: 2839
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib18
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41444b
– volume: 2
  start-page: 9684
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib19
  article-title: Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00501E
– volume: 5
  start-page: 4033
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib10
  article-title: Expanded graphite as superior anode for sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5033
– volume: 22
  start-page: 8911
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib27
  article-title: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00166g
– volume: 18
  start-page: 2106
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib34
  article-title: Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes
  publication-title: Green Chem.
  doi: 10.1039/C5GC02397A
– volume: 55
  start-page: 328
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib56
  article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.12.072
– volume: 147
  start-page: 1271
  year: 2000
  ident: 10.1016/j.jpowsour.2016.08.096_bib58
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 194
  start-page: 10
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib45
  article-title: Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.083
– volume: 3
  start-page: 292
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib63
  article-title: Apple-biowaste-derived hard carbon as a powerful anode material for Na-Ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500437
– volume: 23
  start-page: 947
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib5
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201200691
– volume: 9
  start-page: 2556
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib22
  article-title: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn506394r
– volume: 2
  start-page: 1500195
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib24
  article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500195
– volume: 3
  start-page: 6742
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib41
  article-title: Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00050E
– volume: 192
  start-page: 1126
  year: 1976
  ident: 10.1016/j.jpowsour.2016.08.096_bib1
  article-title: Electrical energy storage and intercalation chemistry
  publication-title: Science
  doi: 10.1126/science.192.4244.1126
– volume: 4
  start-page: 1301584
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib15
  article-title: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201301584
– volume: 1
  start-page: 5269
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib47
  article-title: Rice husk-derived carbon anodes for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10650k
– volume: 2
  start-page: 873
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib55
  article-title: Hollow carbon nanospheres with superior rate capability for sodium-based batteries
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201100691
– volume: 7
  start-page: 27124
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib28
  article-title: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06898
– volume: 6
  start-page: 871
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib17
  article-title: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23599d
– volume: 17
  start-page: 1873
  year: 2007
  ident: 10.1016/j.jpowsour.2016.08.096_bib13
  article-title: Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.200601152
– volume: 44
  start-page: 250
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib31
  article-title: Sustainable carbon materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00232F
– volume: 157
  start-page: A791
  year: 2010
  ident: 10.1016/j.jpowsour.2016.08.096_bib51
  article-title: Improving the performance of biomass-derived carbons in Li-Ion batteries by controlling the lithium insertion process
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3425728
– volume: 148
  start-page: A803
  year: 2001
  ident: 10.1016/j.jpowsour.2016.08.096_bib11
  article-title: The mechanisms of lithium and sodium insertion in carbon materials
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379565
– volume: 3
  start-page: 6534
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib20
  article-title: Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06614F
– volume: 8
  start-page: 941
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib38
  article-title: Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02986K
– volume: 350
  start-page: 1508
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib65
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.aab3798
– volume: 34
  start-page: 193
  year: 1996
  ident: 10.1016/j.jpowsour.2016.08.096_bib39
  article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
  publication-title: Carbon
  doi: 10.1016/0008-6223(96)00177-7
– volume: 21
  start-page: 3136
  year: 2009
  ident: 10.1016/j.jpowsour.2016.08.096_bib40
  article-title: Li storage properties of disordered graphene nanosheets
  publication-title: Chem. Mater
  doi: 10.1021/cm900395k
– volume: 451
  start-page: 652
  year: 2008
  ident: 10.1016/j.jpowsour.2016.08.096_bib3
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 5
  start-page: 5884
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib4
  article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02781j
– volume: 100
  start-page: 181
  year: 2013
  ident: 10.1016/j.jpowsour.2016.08.096_bib50
  article-title: A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2012.12.016
– volume: 188
  start-page: 103
  year: 2016
  ident: 10.1016/j.jpowsour.2016.08.096_bib61
  article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.002
– volume: 4
  start-page: 50950
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib62
  article-title: Recycling chicken eggshell membranes for high-capacity sodium battery anodes
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07995G
– volume: 2
  start-page: 12733
  year: 2014
  ident: 10.1016/j.jpowsour.2016.08.096_bib57
  article-title: Biomass derived hard carbon used as a high performance anode material for sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02068E
– volume: 15
  start-page: 5888
  year: 2015
  ident: 10.1016/j.jpowsour.2016.08.096_bib59
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 55
  start-page: 1696
  year: 2010
  ident: 10.1016/j.jpowsour.2016.08.096_bib49
  article-title: Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.10.051
– volume: 24
  start-page: 2047
  year: 2012
  ident: 10.1016/j.jpowsour.2016.08.096_bib37
  article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
  publication-title: Adv. Mater
  doi: 10.1002/adma.201104634
SSID ssj0001170
Score 2.5144622
Snippet Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Anode
Honey
Lithium ion battery
Mesoporous carbon
Nitrogen-doped
Sodium ion battery
Title Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey
URI https://dx.doi.org/10.1016/j.jpowsour.2016.08.096
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-Sha0ggcYJHhIroi6VFYov8igiCJIKgiqW_vXchaalUiaFbHr4oOp_vPtvn7wi577q-ZEZyS_sdbkG81laXSwByLJAGAYMstgteR_5w7D1N2KRG-tVZGEyrLH3_1qcX3rp8YpfatLM4tt8cF4wN0DYgCohhDBk_PS9AK299_qR5YGWVYicBZkvYeueU8Kw1y9IPXCTHFC-_oPJE8v6_AtRO0BmckOMSLdLe9odOSc0kZ-Roh0PwnIiXOJ_G6wUViaarVOMlZjyCn6BxQpGOeL6hBcOm0XRhVikgbpjuUxjLyxTMx9JpBm-UWEqwQArtwAFqiudO6DRNzOaCjAcP7_2hVdZNsBSE49xiouMLt4N5gkqxyO-KwJPC-KbtygimZ0IZqXF7DDqDm7aKgsCRbTdg2DiKPPeS1BP4_hWhRgjkPAMMIiH0c8VZxL1IOEI5ONZ1g7BKWaEqScWxtsU8rLLHZmGl5BCVHGLRS-43iP0tl21pNfZK8Kovwl8GEoLv3yN7_Q_ZG3KId5jB0ma3pJ4v1-YOcEgum4WhNclB7_F5OPoCQ6jgxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDLYYHLYdpj019sxh145HSUuO0zQE43EZSNyqvCqKoEXANO3fzy4tYtIkDrtVTVxVjmN_SZzPAE9N11PcKuEYry4cjNfGaQqFQI77yhJgUOlxQX_gtUeN9zEfF-A1vwtDaZWZ79_49NRbZ28qmTYriyiqfFRdNDZE24goMIZx9wBKxE7Fi1B66XTbg61DpuIq6WECLphIYOei8PR5uki-aJ-csry8lM2T-Pv_ilE7cad1CicZYGQvm386g4KNz-F4h0bwAmQvWk-izzmTsWGrxNAjJT2iq2BRzIiRePbNUpJNa9jcrhIE3bjiZzidlwlakGOSBbZouVRohAz7oQ80jK6esEkS2-9LGLXehq9tJyud4GiMyGuHy7on3TqlCmrNQ68p_YaS1rM1V4W4QpPaKkMnZDgewtZ06PtVVXN9Tp3DsOFeQTHG718Ds1IS7RnCEIXRX2jBQ9EIZVXqKk13UwaeKyvQGa84lbeYBXkC2TTIlRyQkgOqeym8MlS2cosNs8ZeCZGPRfDLRgJ0_3tkb_4h-wiH7WG_F_Q6g-4tHFELJbTU-B0U18tPe4-wZK0eMrP7AfX943U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+and+sodium+storage+in+highly+ordered+mesoporous+nitrogen-doped+carbons+derived+from+honey&rft.jtitle=Journal+of+power+sources&rft.au=Zhang%2C+Yongzhi&rft.au=Chen%2C+Li&rft.au=Meng%2C+Yan&rft.au=Xie%2C+Jun&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=335&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jpowsour.2016.08.096&rft.externalDocID=S0378775316311053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon