Uniaxial and biaxial ratchetting study of SA333 Gr.6 steel at room temperature

The phenomenon of ratchetting is defined as constant accumulation of plastic strain or deformation under combined steady state and cyclic loading. It can reduce the fatigue life or can cause failure of piping components or systems subjected to seismic or other cyclic loads. The uniaxial ratchetting...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of pressure vessels and piping Vol. 80; no. 3; pp. 179 - 185
Main Authors Kulkarni, S.C., Desai, Y.M., Kant, T., Reddy, G.R., Parulekar, Y., Vaze, K.K.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2003
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The phenomenon of ratchetting is defined as constant accumulation of plastic strain or deformation under combined steady state and cyclic loading. It can reduce the fatigue life or can cause failure of piping components or systems subjected to seismic or other cyclic loads. The uniaxial ratchetting characteristics of SA333 Gr.6 steel have been investigated at room temperature in the present paper. The specimens were subjected to cyclic axial stress with a constant mean stress of 200 MPa and a varying amplitude stress of 149, 174, 199 and 224 MPa. Tests were also performed on 203.2 mm, Sch 80, SA333 Gr. 6 carbon steel straight pipe. The pipe was subjected to a constant internal pressure of 18 MPa and a cyclic bending load. The effects of amplitude of load on the rate of ratchetting have also been investigated in the present paper. The uniaxial experiments showed that specimens exhibited shakedown at low stress amplitude after some strain accumulation. However, specimens experienced continuous ratchetting at higher stress amplitudes with no shakedown before failure. Ovalization of the pipe cross-section was observed when the pipe was subjected to constant internal pressure and cyclic point load. Local bulging was observed at higher loading. The pipe did not show any shakedown behaviour for the given cycles of loading and exhibited continuous ratchetting under the varying amplitude loading.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0308-0161
1879-3541
DOI:10.1016/S0308-0161(03)00029-2