Measurements of Thermal Conductivity and Kapitza Conductance of Niobium for SRF Cavities for Various Treatments

Niobium is the material of choice for making the superconducting radio frequency cavities used in present-day accelerators for the acceleration of charged particles. In order to achieve high accelerating gradients for future accelerators such as the linear collider, thermal limitations in Nb cavitie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 17; no. 2; pp. 1310 - 1313
Main Authors Aizaz, A., Bauer, P., Grimm, T.L., Wright, N.T., Antoine, C.Z.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Niobium is the material of choice for making the superconducting radio frequency cavities used in present-day accelerators for the acceleration of charged particles. In order to achieve high accelerating gradients for future accelerators such as the linear collider, thermal limitations in Nb cavities play an important role. The effects of plastic deformations due to applied strains on thermal conductivity of Nb in phonon transmission regime as well as on its Kapitza conductance have been studied. The study reveals absence of the phonon peak due to applied strains beyond the elastic limits of the Nb metal as well as reduced Kapitza conductance. This resulted in almost 80% reduction in thermal conductivity of the niobium at 2 K. Low temperature annealing did not recover the phonon peak as was seen before the application of plastic deformations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2007.897855