Biomass energy: the scale of the potential resource

Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or...

Full description

Saved in:
Bibliographic Details
Published inTrends in ecology & evolution (Amsterdam) Vol. 23; no. 2; pp. 65 - 72
Main Authors Field, Christopher B., Campbell, J. Elliott, Lobell, David B.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing ∼5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-5347
1872-8383
DOI:10.1016/j.tree.2007.12.001