Measurement of sub-surface delaminations in carbon fibre composites using high-speed phase-shifted speckle interferometry and temporal phase unwrapping

A high-speed phase-shifted speckle interferometer has been developed recently for studying dynamic events. Speckle interferograms are continuously recorded by a CCD camera operating at 1 kHz with temporal phase shifting carried out by a Pockels cell running at the same frequency. Temporal phase unwr...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 40; no. 5; pp. 447 - 458
Main Authors Davila, A, Ruiz, P.D, Kaufmann, G.H, Huntley, J.M
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2003
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A high-speed phase-shifted speckle interferometer has been developed recently for studying dynamic events. Speckle interferograms are continuously recorded by a CCD camera operating at 1 kHz with temporal phase shifting carried out by a Pockels cell running at the same frequency. Temporal phase unwrapping through sequences of more than 1000 frames allows the determination of time-varying absolute displacement maps. This paper presents the application of this speckle interferometry system to the detection and measurement of sub-surface delamination defects in carbon fibre specimens. The influence of re-referencing the temporal phase unwrapping algorithm after different time intervals is analysed to reduce the random phase errors produced by speckle decorrelation and vibration. The performance of several phase-shifting algorithms to minimize the influence of the vibration noise caused by the vacuum pump used to load the specimen is also investigated.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0143-8166
1873-0302
DOI:10.1016/S0143-8166(02)00082-9