Free standing yttria-doped zirconia membranes: Geometrical effects on stability
Professor Arthur Nowick made seminal contributions to the areas of ionic conduction mechanisms in crystalline and disordered systems. An area of emerging interest in the solid state ionics community is investigating conduction in the mesoscopic regime. With free standing membranes, one can probe low...
Saved in:
Published in | Journal of electroceramics Vol. 34; no. 1; pp. 91 - 99 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.02.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Professor Arthur Nowick made seminal contributions to the areas of ionic conduction mechanisms in crystalline and disordered systems. An area of emerging interest in the solid state ionics community is investigating conduction in the mesoscopic regime. With free standing membranes, one can probe low-dimensional effects such as confinement without interference from substrates. Membranes have potential relevance to solid state devices that benefit from reduced ionic resistance, for example sensors and solid oxide fuel cells. Membranes with varying lateral dimensions have been previously reported in literature; however, understanding of stress interactions in suspended oxide structures is in early stages. In this paper, we demonstrate self-supported, i.e. in the absence of any additional mechanical support layers, square and circular membranes of 100 nm thick yttria-doped zirconia (YDZ) having side length and diameters of 0.15–2 mm. The buckled membrane shape is intimately linked to the fabrication processes arising from dry versus wet etching protocols. Geometrical considerations associated with buckling and stability are discussed. Thin film solid oxide fuel cells utilizing circular membranes are fabricated, exhibiting open circuit voltages between 0.8 and 1 V that correlate with membrane size and exhibit a total power output on the order of several mW. These results contribute to advancing experimental techniques to fabricate free standing oxide membranes for fundamental and applied studies pertaining to ionic and electronic conduction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1385-3449 1573-8663 |
DOI: | 10.1007/s10832-014-9917-1 |