A Multi-View Deep Learning Framework for EEG Seizure Detection

The recent advances in pervasive sensing technologies have enabled us to monitor and analyze the multi-channel electroencephalogram (EEG) signals of epilepsy patients to prevent serious outcomes caused by epileptic seizures. To avoid manual visual inspection from long-term EEG readings, automatic EE...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 1; pp. 83 - 94
Main Authors Yuan, Ye, Xun, Guangxu, Jia, Kebin, Zhang, Aidong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recent advances in pervasive sensing technologies have enabled us to monitor and analyze the multi-channel electroencephalogram (EEG) signals of epilepsy patients to prevent serious outcomes caused by epileptic seizures. To avoid manual visual inspection from long-term EEG readings, automatic EEG seizure detection has garnered increasing attention among researchers. In this paper, we present a unified multi-view deep learning framework to capture brain abnormalities associated with seizures based on multi-channel scalp EEG signals. The proposed approach is an end-to-end model that is able to jointly learn multi-view features from both unsupervised multi-channel EEG reconstruction and supervised seizure detection via spectrogram representation. We construct a new autoencoder-based multi-view learning model by incorporating both inter and intra correlations of EEG channels to unleash the power of multi-channel information. By adding a channel-wise competition mechanism in the training phase, we propose a channel-aware seizure detection module to guide our multi-view structure to focus on important and relevant EEG channels. To validate the effectiveness of the proposed framework, extensive experiments against nine baselines, including both traditional handcrafted feature extraction and conventional deep learning methods, are carried out on a benchmark scalp EEG dataset. Experimental results show that the proposed model is able to achieve higher average accuracy and f1-score at 94.37% and 85.34%, respectively, using 5-fold subject-independent cross validation, demonstrating a powerful and effective method in the task of EEG seizure detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2018.2871678