Dual-source discrimination power analysis for multi-instance contactless palmprint recognition
Due to the benefits of palmprint recognition and the advantages of biometric fusion systems, it is necessary to study multi-source palmprint fusion systems. Unfortunately, the research on multi-instance palmprint feature fusion is absent until now. In this paper, we extract the features of left and...
Saved in:
Published in | Multimedia tools and applications Vol. 76; no. 1; pp. 333 - 354 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to the benefits of palmprint recognition and the advantages of biometric fusion systems, it is necessary to study multi-source palmprint fusion systems. Unfortunately, the research on multi-instance palmprint feature fusion is absent until now. In this paper, we extract the features of left and right palmprints with two-dimensional discrete cosine transform (2DDCT) to constitute a dual-source space. Normalization is utilized in dual-source space to avoid the disturbance caused by the coefficients with large absolute values. Thus complicated pre-masking is needless and arbitrary removing of discriminative coefficients is avoided. Since more discriminative coefficients can be preserved and retrieved with discrimination power analysis (DPA) from dual-source space, the accuracy performance is improved. The experiments performed on contactless palmprint database confirm that dual-source DPA, which is designed for multi-instance palmprint feature fusion recognition, outperforms single-source DPA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-015-3058-7 |